A hierarchy of eigencomputations for polynomial optimization on the sphere
- URL: http://arxiv.org/abs/2310.17827v3
- Date: Sun, 13 Jul 2025 23:22:49 GMT
- Title: A hierarchy of eigencomputations for polynomial optimization on the sphere
- Authors: Benjamin Lovitz, Nathaniel Johnston,
- Abstract summary: We introduce a convergent hierarchy of lower bounds on the minimum value of a real form over the unit sphere.<n>The main practical advantage of our hierarchy over the real sum-of-squares hierarchy is that the lower bound at each level is obtained by a minimum eigenvalue.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a convergent hierarchy of lower bounds on the minimum value of a real form over the unit sphere. The main practical advantage of our hierarchy over the real sum-of-squares (RSOS) hierarchy is that the lower bound at each level of our hierarchy is obtained by a minimum eigenvalue computation, as opposed to the full semidefinite program (SDP) required at each level of RSOS. In practice, this allows us to compute bounds on much larger forms than are computationally feasible for RSOS. Our hierarchy outperforms previous alternatives to RSOS, both asymptotically and in numerical experiments. We obtain our hierarchy by proving a reduction from real optimization on the sphere to Hermitian optimization on the sphere, and invoking the Hermitian sum-of-squares (HSOS) hierarchy. This opens the door to using other Hermitian optimization techniques for real optimization, and gives a path towards developing spectral hierarchies for more general constrained real optimization problems. To this end, we use our techniques to develop a hierarchy of eigencomputations for computing the real tensor spectral norm.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace [4.917399520581689]
In this paper, we construct a sequence of low-dimensional approximate Krylov subspaces with the aid of the Lanczos process.
The constructed subspace is able to dynamically and incrementally approximate the Hessian inverse vector product.
We also propose aprovable subspace-based framework for bilevel problems where one central step is to solve a small-size tridiagonal linear system.
arXiv Detail & Related papers (2024-04-04T09:57:29Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Versatile Single-Loop Method for Gradient Estimator: First and Second
Order Optimality, and its Application to Federated Learning [45.78238792836363]
We present a single-loop algorithm named SLEDGE (Single-Loop-E Gradient Estimator) for periodic convergence.
Unlike existing methods, SLEDGE has the advantage of versatility; (ii) second-order optimal, (ii) in the PL region, and (iii) smaller complexity under less of data.
arXiv Detail & Related papers (2022-09-01T11:05:26Z) - Synthesizing Optimal Parallelism Placement and Reduction Strategies on
Hierarchical Systems for Deep Learning [0.3345437353879254]
We present a novel characterization of the mapping of multiple parallelism forms onto hierarchical accelerator systems.
We experimentally verify the substantial effect of these mappings on all-reduce performance (up to 448x)
We offer a novel syntax-guided program synthesis framework that is able to decompose reductions over one or more parallelism axes to sequences of collectives.
arXiv Detail & Related papers (2021-10-20T13:05:49Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.