Large-scale Foundation Models and Generative AI for BigData Neuroscience
- URL: http://arxiv.org/abs/2310.18377v1
- Date: Fri, 27 Oct 2023 00:44:40 GMT
- Title: Large-scale Foundation Models and Generative AI for BigData Neuroscience
- Authors: Ran Wang and Zhe Sage Chen
- Abstract summary: Recent advances in machine learning have made revolutionary breakthroughs in computer games, image and natural language understanding.
Foundation models and large-scale language models (LLMs) have recently achieved human-like intelligence thanks to BigData.
With the help of self-supervised learning (SSL) and transfer learning, these models may potentially reshape the landscapes of neuroscience research.
- Score: 3.4825443450916196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in machine learning have made revolutionary breakthroughs in
computer games, image and natural language understanding, and scientific
discovery. Foundation models and large-scale language models (LLMs) have
recently achieved human-like intelligence thanks to BigData. With the help of
self-supervised learning (SSL) and transfer learning, these models may
potentially reshape the landscapes of neuroscience research and make a
significant impact on the future. Here we present a mini-review on recent
advances in foundation models and generative AI models as well as their
applications in neuroscience, including natural language and speech, semantic
memory, brain-machine interfaces (BMIs), and data augmentation. We argue that
this paradigm-shift framework will open new avenues for many neuroscience
research directions and discuss the accompanying challenges and opportunities.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
We present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
arXiv Detail & Related papers (2023-10-14T13:17:58Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Looking deeper into interpretable deep learning in neuroimaging: a
comprehensive survey [20.373311465258393]
This paper comprehensively reviews interpretable deep learning models in the neuroimaging domain.
We discuss how multiple recent neuroimaging studies leveraged model interpretability to capture anatomical and functional brain alterations most relevant to model predictions.
arXiv Detail & Related papers (2023-07-14T04:50:04Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
We propose a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex.
Our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware.
arXiv Detail & Related papers (2023-06-07T13:08:46Z) - Large AI Models in Health Informatics: Applications, Challenges, and the
Future [31.66920436409032]
Large AI models, or foundation models, are models emerging with massive scales both parameter-wise and data-wise.
ChatGPT has compelled people's imagination about the far-reaching influence that large AI models can have.
In health informatics, the advent of large AI models has brought new paradigms for the design of methodologies.
arXiv Detail & Related papers (2023-03-21T03:28:33Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.