Feature Selection in the Contrastive Analysis Setting
- URL: http://arxiv.org/abs/2310.18531v1
- Date: Fri, 27 Oct 2023 23:16:03 GMT
- Title: Feature Selection in the Contrastive Analysis Setting
- Authors: Ethan Weinberger, Ian Covert, Su-In Lee
- Abstract summary: Contrastive analysis (CA) refers to the exploration of variations uniquely enriched in a target dataset.
We present contrastive feature selection (CFS), a method for performing feature selection in the CA setting.
We find that our method consistently outperforms previously proposed state-of-the-art supervised and fully unsupervised feature selection methods.
- Score: 17.90957424147776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive analysis (CA) refers to the exploration of variations uniquely
enriched in a target dataset as compared to a corresponding background dataset
generated from sources of variation that are irrelevant to a given task. For
example, a biomedical data analyst may wish to find a small set of genes to use
as a proxy for variations in genomic data only present among patients with a
given disease (target) as opposed to healthy control subjects (background).
However, as of yet the problem of feature selection in the CA setting has
received little attention from the machine learning community. In this work we
present contrastive feature selection (CFS), a method for performing feature
selection in the CA setting. We motivate our approach with a novel
information-theoretic analysis of representation learning in the CA setting,
and we empirically validate CFS on a semi-synthetic dataset and four real-world
biomedical datasets. We find that our method consistently outperforms
previously proposed state-of-the-art supervised and fully unsupervised feature
selection methods not designed for the CA setting. An open-source
implementation of our method is available at https://github.com/suinleelab/CFS.
Related papers
- Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Interpretability-Driven Sample Selection Using Self Supervised Learning
For Disease Classification And Segmentation [4.898744396854313]
We propose a novel sample selection methodology based on deep features leveraging information contained in interpretability saliency maps.
We show our proposed self supervised approach outperforms other approaches in selecting informative samples leading to state of the art performance with fewer samples.
arXiv Detail & Related papers (2021-04-13T10:46:33Z) - Active Selection of Classification Features [0.0]
Auxiliary data, such as demographics, might help in selecting a smaller sample that comprises the individuals with the most informative MRI scans.
We propose two utility-based approaches for this problem, and evaluate their performance on three public real-world benchmark datasets.
arXiv Detail & Related papers (2021-02-26T18:19:08Z) - Selecting Treatment Effects Models for Domain Adaptation Using Causal
Knowledge [82.5462771088607]
We propose a novel model selection metric specifically designed for ITE methods under the unsupervised domain adaptation setting.
In particular, we propose selecting models whose predictions of interventions' effects satisfy known causal structures in the target domain.
arXiv Detail & Related papers (2021-02-11T21:03:14Z) - RENT -- Repeated Elastic Net Technique for Feature Selection [0.46180371154032895]
We present the Repeated Elastic Net Technique (RENT) for Feature Selection.
RENT uses an ensemble of generalized linear models with elastic net regularization, each trained on distinct subsets of the training data.
RENT provides valuable information for model interpretation concerning the identification of objects in the data that are difficult to predict during training.
arXiv Detail & Related papers (2020-09-27T07:55:52Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - An Efficient Framework for Automated Screening of Clinically Significant
Macular Edema [0.41998444721319206]
The present study proposes a new approach to automated screening of Clinically Significant Macular Edema (CSME)
The proposed approach combines a pre-trained deep neural network with meta-heuristic feature selection.
A feature space over-sampling technique is being used to overcome the effects of skewed datasets.
arXiv Detail & Related papers (2020-01-20T07:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.