Exploring Data Augmentations on Self-/Semi-/Fully- Supervised
Pre-trained Models
- URL: http://arxiv.org/abs/2310.18850v1
- Date: Sat, 28 Oct 2023 23:46:31 GMT
- Title: Exploring Data Augmentations on Self-/Semi-/Fully- Supervised
Pre-trained Models
- Authors: Shentong Mo, Zhun Sun, Chao Li
- Abstract summary: We investigate how data augmentation affects performance of vision pre-trained models.
We apply 4 types of data augmentations termed with Random Erasing, CutOut, CutMix and MixUp.
We report their performance on vision tasks such as image classification, object detection, instance segmentation, and semantic segmentation.
- Score: 24.376036129920948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation has become a standard component of vision pre-trained
models to capture the invariance between augmented views. In practice,
augmentation techniques that mask regions of a sample with zero/mean values or
patches from other samples are commonly employed in pre-trained models with
self-/semi-/fully-supervised contrastive losses. However, the underlying
mechanism behind the effectiveness of these augmentation techniques remains
poorly explored. To investigate the problems, we conduct an empirical study to
quantify how data augmentation affects performance. Concretely, we apply 4
types of data augmentations termed with Random Erasing, CutOut, CutMix and
MixUp to a series of self-/semi-/fully- supervised pre-trained models. We
report their performance on vision tasks such as image classification, object
detection, instance segmentation, and semantic segmentation. We then explicitly
evaluate the invariance and diversity of the feature embedding. We observe
that: 1) Masking regions of the images decreases the invariance of the learned
feature embedding while providing a more considerable diversity. 2) Manual
annotations do not change the invariance or diversity of the learned feature
embedding. 3) The MixUp approach improves the diversity significantly, with
only a marginal decrease in terms of the invariance.
Related papers
- Amortised Invariance Learning for Contrastive Self-Supervision [11.042648980854485]
We introduce the notion of amortised invariance learning for contrastive self supervision.
We show that our amortised features provide a reliable way to learn diverse downstream tasks with different invariance requirements.
This provides an exciting perspective that opens up new horizons in the field of general purpose representation learning.
arXiv Detail & Related papers (2023-02-24T16:15:11Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - EquiMod: An Equivariance Module to Improve Self-Supervised Learning [77.34726150561087]
Self-supervised visual representation methods are closing the gap with supervised learning performance.
These methods rely on maximizing the similarity between embeddings of related synthetic inputs created through data augmentations.
We introduce EquiMod a generic equivariance module that structures the learned latent space.
arXiv Detail & Related papers (2022-11-02T16:25:54Z) - Rethinking the Augmentation Module in Contrastive Learning: Learning
Hierarchical Augmentation Invariance with Expanded Views [22.47152165975219]
A data augmentation module is utilized in contrastive learning to transform the given data example into two views.
This paper proposes a general method to alleviate these two problems by considering where and what to contrast in a general contrastive learning framework.
arXiv Detail & Related papers (2022-06-01T04:30:46Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Why Do Self-Supervised Models Transfer? Investigating the Impact of
Invariance on Downstream Tasks [79.13089902898848]
Self-supervised learning is a powerful paradigm for representation learning on unlabelled images.
We show that different tasks in computer vision require features to encode different (in)variances.
arXiv Detail & Related papers (2021-11-22T18:16:35Z) - MixSiam: A Mixture-based Approach to Self-supervised Representation
Learning [33.52892899982186]
Recently contrastive learning has shown significant progress in learning visual representations from unlabeled data.
We propose MixSiam, a mixture-based approach upon the traditional siamese network.
arXiv Detail & Related papers (2021-11-04T08:12:47Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.