M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models
- URL: http://arxiv.org/abs/2310.19240v2
- Date: Sat, 27 Jul 2024 09:53:36 GMT
- Title: M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models
- Authors: Wai-Chung Kwan, Xingshan Zeng, Yufei Wang, Yusen Sun, Liangyou Li, Lifeng Shang, Qun Liu, Kam-Fai Wong,
- Abstract summary: M4LE is a benchmark for evaluating the long-sequence capability of large language models (LLMs)
M4LE is based on a diverse NLP task pool comprising 36 NLP task types and 12 domains.
We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs.
- Score: 58.54538318912159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.
Related papers
- Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? [36.83397306207386]
We evaluate the capabilities of 17 leading Large Language Models (LLMs)
Strikingly, many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance.
We find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows.
arXiv Detail & Related papers (2024-11-07T18:59:27Z) - Investigating Large Language Models for Complex Word Identification in Multilingual and Multidomain Setups [1.8377902806196766]
Complex Word Identification (CWI) is an essential step in the lexical simplification task and has recently become a task on its own.
Large language models (LLMs) recently became popular in the Natural Language Processing community because of their versatility and capability to solve unseen tasks in zero/few-shot settings.
Our work investigates LLM usage, specifically open-source models such as Llama 2, Llama 3, and Vicuna v1.5, and closed-source, such as ChatGPT-3.5-turbo and GPT-4o, in the CWI, LCP, and MWE settings.
arXiv Detail & Related papers (2024-11-03T22:31:02Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window? [37.64593022203498]
NeedleBench is a framework consisting of progressively more challenging tasks for assessing bilingual long-context capabilities.
We use the framework to assess how well the leading open-source models can identify key information relevant to the question.
We propose the Ancestral Trace Challenge to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - Needle In A Multimodal Haystack [79.81804334634408]
We present the first benchmark specifically designed to evaluate the capability of existing MLLMs to comprehend long multimodal documents.
Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning.
We observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation.
arXiv Detail & Related papers (2024-06-11T13:09:16Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
We investigate the role of semantic representations in the era of large language models (LLMs)
We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT.
We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions.
arXiv Detail & Related papers (2024-05-02T17:32:59Z) - Counting-Stars: A Multi-evidence, Position-aware, and Scalable Benchmark for Evaluating Long-Context Large Language Models [14.906150451947443]
We propose a benchmark for evaluating long-context Large Language Models (LLMs) named Counting-Stars.
We conduct experiments to evaluate long-context LLMs (i.e., GPT-4 Turbo, Gemini 1.5 Pro, Claude3 Opus, GLM-4, and Moonshot-v1)
Results show that Gemini 1.5 Pro achieves the best overall results, while GPT-4 Turbo is the most stable across various tasks.
arXiv Detail & Related papers (2024-03-18T14:01:45Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding [58.20031627237889]
LongBench is the first bilingual, multi-task benchmark for long context understanding.
It comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese)
arXiv Detail & Related papers (2023-08-28T11:53:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.