Invariant kernels on Riemannian symmetric spaces: a harmonic-analytic approach
- URL: http://arxiv.org/abs/2310.19270v2
- Date: Fri, 6 Sep 2024 05:45:42 GMT
- Title: Invariant kernels on Riemannian symmetric spaces: a harmonic-analytic approach
- Authors: Nathael Da Costa, Cyrus Mostajeran, Juan-Pablo Ortega, Salem Said,
- Abstract summary: This work aims to prove that the classical Gaussian kernel, when defined on a non-Euclidean symmetric space, is never positive-definite for any choice of parameter.
New results lay out a blueprint for the study of invariant kernels on symmetric spaces.
- Score: 6.5497574505866885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work aims to prove that the classical Gaussian kernel, when defined on a non-Euclidean symmetric space, is never positive-definite for any choice of parameter. To achieve this goal, the paper develops new geometric and analytical arguments. These provide a rigorous characterization of the positive-definiteness of the Gaussian kernel, which is complete but for a limited number of scenarios in low dimensions that are treated by numerical computations. Chief among these results are the L$^{\!\scriptscriptstyle p}$-$\hspace{0.02cm}$Godement theorems (where $p = 1,2$), which provide verifiable necessary and sufficient conditions for a kernel defined on a symmetric space of non-compact type to be positive-definite. A celebrated theorem, sometimes called the Bochner-Godement theorem, already gives such conditions and is far more general in its scope, but is especially hard to apply. Beyond the connection with the Gaussian kernel, the new results in this work lay out a blueprint for the study of invariant kernels on symmetric spaces, bringing forth specific harmonic analysis tools that suggest many future applications.
Related papers
- Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - The Gaussian kernel on the circle and spaces that admit isometric
embeddings of the circle [4.576379639081977]
On Euclidean spaces, the Gaussian kernel is one of the most widely used kernels in applications.
It has also been used on non-Euclidean spaces, where it is known that there may be (and often are) scale parameters for which it is not positive definite.
arXiv Detail & Related papers (2023-02-21T12:17:14Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces [43.877478563933316]
In to symmetries is one of the most fundamental forms of prior information one can consider.
In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces.
arXiv Detail & Related papers (2023-01-30T17:27:12Z) - Isotropic Gaussian Processes on Finite Spaces of Graphs [71.26737403006778]
We propose a principled way to define Gaussian process priors on various sets of unweighted graphs.
We go further to consider sets of equivalence classes of unweighted graphs and define the appropriate versions of priors thereon.
Inspired by applications in chemistry, we illustrate the proposed techniques on a real molecular property prediction task in the small data regime.
arXiv Detail & Related papers (2022-11-03T10:18:17Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case [43.877478563933316]
In to symmetries is one of the most fundamental forms of prior information one can consider.
In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces.
arXiv Detail & Related papers (2022-08-31T16:40:40Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
We present a recipe for constructing gauge equivariant kernels, which induce vector-valued Gaussian processes coherent with geometry.
We extend standard Gaussian process training methods, such as variational inference, to this setting.
arXiv Detail & Related papers (2021-10-27T13:31:10Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
We investigate the approximation of the $L2$-operator defined by $[Pf](x) := mathbbE[ f(Y) mid X = x ]$ under minimal assumptions.
We prove that $P$ can be arbitrarily well approximated in operator norm by Hilbert-Schmidt operators acting on a reproducing kernel space.
arXiv Detail & Related papers (2020-12-23T19:06:12Z) - Search for Efficient Formulations for Hamiltonian Simulation of
non-Abelian Lattice Gauge Theories [0.0]
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation.
It remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories.
This paper is a first step toward addressing this question in the case of non-Abelian LGTs.
arXiv Detail & Related papers (2020-09-24T16:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.