Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes
- URL: http://arxiv.org/abs/2310.19666v1
- Date: Mon, 30 Oct 2023 15:49:45 GMT
- Title: Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes
- Authors: Zheng Wang, Shikai Fang, Shibo Li, Shandian Zhe
- Abstract summary: tensor decomposition is an important tool for multiway data analysis.
We propose Dynamic EMbedIngs fOr dynamic algorithm dEcomposition (DEMOTE)
We show the advantage of our approach in both simulation study and real-world applications.
- Score: 24.723536390322582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor decomposition is an important tool for multiway data analysis. In
practice, the data is often sparse yet associated with rich temporal
information. Existing methods, however, often under-use the time information
and ignore the structural knowledge within the sparsely observed tensor
entries. To overcome these limitations and to better capture the underlying
temporal structure, we propose Dynamic EMbedIngs fOr dynamic Tensor
dEcomposition (DEMOTE). We develop a neural diffusion-reaction process to
estimate dynamic embeddings for the entities in each tensor mode. Specifically,
based on the observed tensor entries, we build a multi-partite graph to encode
the correlation between the entities. We construct a graph diffusion process to
co-evolve the embedding trajectories of the correlated entities and use a
neural network to construct a reaction process for each individual entity. In
this way, our model can capture both the commonalities and personalities during
the evolution of the embeddings for different entities. We then use a neural
network to model the entry value as a nonlinear function of the embedding
trajectories. For model estimation, we combine ODE solvers to develop a
stochastic mini-batch learning algorithm. We propose a stratified sampling
method to balance the cost of processing each mini-batch so as to improve the
overall efficiency. We show the advantage of our approach in both simulation
study and real-world applications. The code is available at
https://github.com/wzhut/Dynamic-Tensor-Decomposition-via-Neural-Diffusion-Reaction-Processes.
Related papers
- Simulation-Free Training of Neural ODEs on Paired Data [20.36333430055869]
We employ the flow matching framework for simulation-free training of NODEs.
We show that applying flow matching directly between paired data can often lead to an ill-defined flow.
We propose a simple extension that applies flow matching in the embedding space of data pairs.
arXiv Detail & Related papers (2024-10-30T11:18:27Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
Training of neural networks is a computationally intensive task.
We propose a model based on the correlation of the parameters' dynamics, which dramatically reduces the dimensionality.
This representation enhances the understanding of the underlying training dynamics and can pave the way for designing better acceleration techniques.
arXiv Detail & Related papers (2022-12-18T08:34:11Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements.
In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach.
The proposed framework to learn a model describing the vector field is highly effective under noisy measurements.
arXiv Detail & Related papers (2022-05-19T11:24:41Z) - Characterizing and overcoming the greedy nature of learning in
multi-modal deep neural networks [62.48782506095565]
We show that due to the greedy nature of learning in deep neural networks, models tend to rely on just one modality while under-fitting the other modalities.
We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning.
arXiv Detail & Related papers (2022-02-10T20:11:21Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements.
In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method.
arXiv Detail & Related papers (2021-09-23T15:43:45Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.