LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations
- URL: http://arxiv.org/abs/2310.20175v2
- Date: Wed, 1 Nov 2023 02:21:53 GMT
- Title: LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations
- Authors: Kunyu Wang and Juluan Shi and Wenxuan Wang
- Abstract summary: We present a novel approach to generate transferable targeted adversarial examples.
We exploit the vulnerability of deep neural networks to perturbations on high-frequency components of images.
Our proposed approach significantly outperforms state-of-the-art methods.
- Score: 25.929492841042666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are susceptible to adversarial attacks, which pose a
significant threat to their security and reliability in real-world
applications. The most notable adversarial attacks are transfer-based attacks,
where an adversary crafts an adversarial example to fool one model, which can
also fool other models. While previous research has made progress in improving
the transferability of untargeted adversarial examples, the generation of
targeted adversarial examples that can transfer between models remains a
challenging task. In this work, we present a novel approach to generate
transferable targeted adversarial examples by exploiting the vulnerability of
deep neural networks to perturbations on high-frequency components of images.
We observe that replacing the high-frequency component of an image with that of
another image can mislead deep models, motivating us to craft perturbations
containing high-frequency information to achieve targeted attacks. To this end,
we propose a method called Low-Frequency Adversarial Attack (\name), which
trains a conditional generator to generate targeted adversarial perturbations
that are then added to the low-frequency component of the image. Extensive
experiments on ImageNet demonstrate that our proposed approach significantly
outperforms state-of-the-art methods, improving targeted attack success rates
by a margin from 3.2\% to 15.5\%.
Related papers
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Improving the Transferability of Adversarial Samples by Path-Augmented
Method [38.41363108018462]
We propose the Path-Augmented Method (PAM) to overcome the pitfall of augmenting semantics-inconsistent images.
PAM can achieve an improvement of over 4.8% on average compared with the state-of-the-art baselines in terms of the attack success rates.
arXiv Detail & Related papers (2023-03-28T05:14:04Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z) - AdvHaze: Adversarial Haze Attack [19.744435173861785]
We introduce a novel adversarial attack method based on haze, which is a common phenomenon in real-world scenery.
Our method can synthesize potentially adversarial haze into an image based on the atmospheric scattering model with high realisticity.
We demonstrate that the proposed method achieves a high success rate, and holds better transferability across different classification models than the baselines.
arXiv Detail & Related papers (2021-04-28T09:52:25Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Random Transformation of Image Brightness for Adversarial Attack [5.405413975396116]
adversarial examples are crafted by adding small, human-imperceptibles to the original images.
Deep neural networks are vulnerable to adversarial examples, which are crafted by adding small, human-imperceptibles to the original images.
We propose an adversarial example generation method based on this phenomenon, which can be integrated with Fast Gradient Sign Method.
Our method has a higher success rate for black-box attacks than other attack methods based on data augmentation.
arXiv Detail & Related papers (2021-01-12T07:00:04Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.