Improving Entropy-Based Test-Time Adaptation from a Clustering View
- URL: http://arxiv.org/abs/2310.20327v6
- Date: Fri, 26 Apr 2024 03:11:42 GMT
- Title: Improving Entropy-Based Test-Time Adaptation from a Clustering View
- Authors: Guoliang Lin, Hanjiang Lai, Yan Pan, Jian Yin,
- Abstract summary: We introduce a new clustering perspective on the entropy-based TTA.
We propose to improve EBTTA from the assignment step and the updating step, where robust label assignment, similarity-preserving constraint, sample selection, and gradient accumulation are proposed.
Experimental results demonstrate that our method can achieve consistent improvements on various datasets.
- Score: 15.157208389691238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain shift is a common problem in the realistic world, where training data and test data follow different data distributions. To deal with this problem, fully test-time adaptation (TTA) leverages the unlabeled data encountered during test time to adapt the model. In particular, entropy-based TTA (EBTTA) methods, which minimize the prediction's entropy on test samples, have shown great success. In this paper, we introduce a new clustering perspective on the EBTTA. It is an iterative algorithm: 1) in the assignment step, the forward process of the EBTTA models is the assignment of labels for these test samples, and 2) in the updating step, the backward process is the update of the model via the assigned samples. This new perspective allows us to explore how entropy minimization influences test-time adaptation. Accordingly, this observation can guide us to put forward the improvement of EBTTA. We propose to improve EBTTA from the assignment step and the updating step, where robust label assignment, similarity-preserving constraint, sample selection, and gradient accumulation are proposed to explicitly utilize more information. Experimental results demonstrate that our method can achieve consistent improvements on various datasets. Code is provided in the supplementary material.
Related papers
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
Training-free test-time dynamic adapter (TDA) is a promising approach to address this issue.
We propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota)
Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment.
arXiv Detail & Related papers (2024-09-28T15:03:28Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - Improved Text Classification via Test-Time Augmentation [2.493374942115722]
Test-time augmentation is an established technique to improve the performance of image classification models.
We present augmentation policies that yield significant accuracy improvements with language models.
Experiments across a binary classification task and dataset show that test-time augmentation can deliver consistent improvements.
arXiv Detail & Related papers (2022-06-27T19:57:27Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.