Learning From Mistakes Makes LLM Better Reasoner
- URL: http://arxiv.org/abs/2310.20689v4
- Date: Fri, 29 Mar 2024 07:17:39 GMT
- Title: Learning From Mistakes Makes LLM Better Reasoner
- Authors: Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, Weizhu Chen,
- Abstract summary: Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems.
This work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process.
- Score: 106.48571828587728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve their reasoning capabilities, this work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LEMA incorporates mistake-correction data pairs during fine-tuning LLMs. Specifically, we first collect inaccurate reasoning paths from various LLMs, and then employ GPT-4 as a ''corrector'' to identify the mistake step, explain the reason for the mistake, correct the mistake and generate the final answer. In addition, we apply a correction-centric evolution strategy that effectively expands the question set for generating correction data. Experiments across various LLMs and reasoning tasks show that LEMA effectively improves CoT-alone fine-tuning. Our further ablations shed light on the non-homogeneous effectiveness between CoT data and correction data. These results suggest a significant potential for LLMs to improve through learning from their mistakes. Our code, models and prompts are publicly available at https://github.com/microsoft/LEMA.
Related papers
- Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)
RISE injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation.
Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners [23.713779973116733]
Self-correction is a method that can stimulate the potential reasoning abilities of large language models (LLMs)
We propose S$3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning.
arXiv Detail & Related papers (2024-09-03T01:40:21Z) - DOP: Diagnostic-Oriented Prompting for Large Language Models in Mathematical Correction [21.511831985975473]
Math world problems correction(MWPC) is a novel task dedicated to rectifying reasoning errors in the process of solving mathematical problems.
We address two key objectives: Distinguishing between mathematical reasoning and error correction.
We propose a novel method called diagnostic-oriented promping(DOP) aimed at facilitating LLMs to excel in error correction.
arXiv Detail & Related papers (2024-05-20T15:13:22Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks.
CoT usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors.
We propose Deeply Understanding the Problems (DUP) to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors.
arXiv Detail & Related papers (2024-04-23T12:16:05Z) - Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning [34.34977150518316]
textscCoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references.
textbfSelf-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes.
textbfMistake tuning involves finetuning models in both correct and incorrect reasoning domains.
arXiv Detail & Related papers (2024-03-29T08:30:34Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Learning to Check: Unleashing Potentials for Self-Correction in Large Language Models [5.463333911506443]
We aim to enhance the self-checking capabilities of large language models (LLMs) by constructing training data for checking tasks.
We propose a specialized checking format called "Step CoT Check"
Experiments demonstrate that fine-tuning with the "Step CoT Check" format significantly improves the self-checking and self-correction abilities of LLMs.
arXiv Detail & Related papers (2024-02-20T14:23:23Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
Large Language Models (LLMs) like ChatGPT are in various applications due to their extensive knowledge from pre-training and fine-tuning.
Despite this, they are prone to generating factual and commonsense errors, raising concerns in critical areas like healthcare, journalism, and education.
We introduce a novel, automatic testing framework, FactChecker, aimed at uncovering factual inaccuracies in LLMs.
arXiv Detail & Related papers (2024-01-01T14:02:27Z) - LLMs cannot find reasoning errors, but can correct them given the error location [0.9017736137562115]
Poor self-correction performance stems from LLMs' inability to find logical mistakes, rather than their ability to correct a known mistake.
We benchmark several state-of-the-art LLMs on their mistake-finding ability and demonstrate that they generally struggle with the task.
We show that it is possible to obtain mistake location information without ground truth labels or in-domain training data.
arXiv Detail & Related papers (2023-11-14T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.