Object-centric Video Representation for Long-term Action Anticipation
- URL: http://arxiv.org/abs/2311.00180v1
- Date: Tue, 31 Oct 2023 22:54:31 GMT
- Title: Object-centric Video Representation for Long-term Action Anticipation
- Authors: Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee,
Chiho Choi, Chen Sun
- Abstract summary: Key motivation is that objects provide important cues to recognize and predict human-object interactions.
We propose to build object-centric video representations by leveraging visual-language pretrained models.
To recognize and predict human-object interactions, we use a Transformer-based neural architecture.
- Score: 33.115854386196126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on building object-centric representations for long-term
action anticipation in videos. Our key motivation is that objects provide
important cues to recognize and predict human-object interactions, especially
when the predictions are longer term, as an observed "background" object could
be used by the human actor in the future. We observe that existing object-based
video recognition frameworks either assume the existence of in-domain
supervised object detectors or follow a fully weakly-supervised pipeline to
infer object locations from action labels. We propose to build object-centric
video representations by leveraging visual-language pretrained models. This is
achieved by "object prompts", an approach to extract task-specific
object-centric representations from general-purpose pretrained models without
finetuning. To recognize and predict human-object interactions, we use a
Transformer-based neural architecture which allows the "retrieval" of relevant
objects for action anticipation at various time scales. We conduct extensive
evaluations on the Ego4D, 50Salads, and EGTEA Gaze+ benchmarks. Both
quantitative and qualitative results confirm the effectiveness of our proposed
method.
Related papers
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Simultaneous Detection and Interaction Reasoning for Object-Centric Action Recognition [21.655278000690686]
We propose an end-to-end object-centric action recognition framework.
It simultaneously performs Detection And Interaction Reasoning in one stage.
We conduct experiments on two datasets, Something-Else and Ikea-Assembly.
arXiv Detail & Related papers (2024-04-18T05:06:12Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Leveraging Next-Active Objects for Context-Aware Anticipation in
Egocentric Videos [31.620555223890626]
We study the problem of Short-Term Object interaction anticipation (STA)
We propose NAOGAT, a multi-modal end-to-end transformer network, to guide the model to predict context-aware future actions.
Our model outperforms existing methods on two separate datasets.
arXiv Detail & Related papers (2023-08-16T12:07:02Z) - Object-Centric Scene Representations using Active Inference [4.298360054690217]
Representing a scene and its constituent objects from raw sensory data is a core ability for enabling robots to interact with their environment.
We propose a novel approach for scene understanding, leveraging a hierarchical object-centric generative model that enables an agent to infer object category.
For evaluating the behavior of an active vision agent, we also propose a new benchmark where, given a target viewpoint of a particular object, the agent needs to find the best matching viewpoint.
arXiv Detail & Related papers (2023-02-07T06:45:19Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
We introduce Self-Supervised Learning Over Sets (SOS) to pre-train a generic Objects In Contact (OIC) representation model.
Our OIC significantly boosts the performance of multiple state-of-the-art video classification models.
arXiv Detail & Related papers (2022-04-10T23:27:19Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
In this paper, we use the prediction task as self-supervision and build a novel object-centric model for image sequence representation.
Our framework can be trained without the help of any manual annotation or pretrained network.
Initial experiments confirm that the proposed pipeline is a promising step towards object-centric video prediction.
arXiv Detail & Related papers (2021-03-09T19:14:33Z) - Learning Long-term Visual Dynamics with Region Proposal Interaction
Networks [75.06423516419862]
We build object representations that can capture inter-object and object-environment interactions over a long-range.
Thanks to the simple yet effective object representation, our approach outperforms prior methods by a significant margin.
arXiv Detail & Related papers (2020-08-05T17:48:00Z) - A Deep Learning Approach to Object Affordance Segmentation [31.221897360610114]
We design an autoencoder that infers pixel-wise affordance labels in both videos and static images.
Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism.
We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF.
arXiv Detail & Related papers (2020-04-18T15:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.