Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning
- URL: http://arxiv.org/abs/2311.00201v2
- Date: Fri, 16 Aug 2024 16:34:00 GMT
- Title: Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning
- Authors: Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, Yuejie Chi,
- Abstract summary: Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories.
In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment.
We learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner.
- Score: 46.28771270378047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment. Focusing on infinite-horizon Markov decision processes, the goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner, where each agent only communicates with its neighbors over some prescribed graph topology. We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods in the tabular setting under softmax parameterization, where gradient tracking is applied to estimate the global Q-function to mitigate the impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees under exact policy evaluation, where the rates are nearly independent of the size of the state-action space and illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the first time that near dimension-free global convergence is established for federated multi-task RL using policy optimization. We further go beyond the tabular setting by proposing a federated natural actor critic (NAC) method for multi-task RL with function approximation, and establish its finite-time sample complexity taking the errors of function approximation into account.
Related papers
- Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction.
variations in task content and complexity pose significant challenges in policy formulation.
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
arXiv Detail & Related papers (2024-11-02T05:49:14Z) - Towards Fast Rates for Federated and Multi-Task Reinforcement Learning [34.34798425737858]
We propose Fast-FedPG, a novel federated policy algorithm with a carefully designed bias-correction mechanism.
Under a gradient-domination condition, we prove that our algorithm guarantees (i) fast linear convergence with exact gradients, and (ii) sub-linear rates that enjoy a linear speedup w.r.t. the number of agents with noisy, truncated policy gradients.
arXiv Detail & Related papers (2024-09-09T02:59:17Z) - Natural Policy Gradient and Actor Critic Methods for Constrained Multi-Task Reinforcement Learning [13.908826484332282]
Multi-task reinforcement learning (RL) aims to find a single policy that effectively solves multiple tasks at the same time.
This paper presents a constrained formulation for multi-task RL where the goal is to maximize the average performance of the policy across tasks subject to bounds on the performance in each task.
arXiv Detail & Related papers (2024-05-03T19:43:30Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks.
We introduce FedSARSA, a novel on-policy reinforcement learning scheme equipped with linear function approximation.
We show that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity.
arXiv Detail & Related papers (2024-01-27T02:43:45Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
We investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback.
We consider the general reward setting where the reward can be defined over the whole trajectory.
We introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability.
arXiv Detail & Related papers (2023-05-24T07:11:26Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Global Convergence of Localized Policy Iteration in Networked
Multi-Agent Reinforcement Learning [25.747559058350557]
We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network.
The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards.
To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) that provably learns a near-globally-optimal policy using only local information.
arXiv Detail & Related papers (2022-11-30T15:58:00Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.