Generalization Bounds for Label Noise Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2311.00274v1
- Date: Wed, 1 Nov 2023 03:51:46 GMT
- Title: Generalization Bounds for Label Noise Stochastic Gradient Descent
- Authors: Jung Eun Huh (1), Patrick Rebeschini (1) ((1) University of Oxford)
- Abstract summary: We generalization error bounds for gradient descent (SGD) with label noise in non-metric conditions.
Our analysis offers insights into the effect of label noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop generalization error bounds for stochastic gradient descent (SGD)
with label noise in non-convex settings under uniform dissipativity and
smoothness conditions. Under a suitable choice of semimetric, we establish a
contraction in Wasserstein distance of the label noise stochastic gradient flow
that depends polynomially on the parameter dimension $d$. Using the framework
of algorithmic stability, we derive time-independent generalisation error
bounds for the discretized algorithm with a constant learning rate. The error
bound we achieve scales polynomially with $d$ and with the rate of $n^{-2/3}$,
where $n$ is the sample size. This rate is better than the best-known rate of
$n^{-1/2}$ established for stochastic gradient Langevin dynamics (SGLD) --
which employs parameter-independent Gaussian noise -- under similar conditions.
Our analysis offers quantitative insights into the effect of label noise.
Related papers
- Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
We show that wetailed high-prob convergence guarantees of learning on streaming data in the presence of heavy-tailed noise.
We demonstrate analytically and that $ta$ can be used to the preferred choice of setting for a given problem.
arXiv Detail & Related papers (2023-10-28T18:53:41Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
We introduce biased gradient oracles to capture a setting where the function measurements have an estimation error.
Our proposed oracles are in practical contexts, for instance, risk measure estimation from a batch of independent and identically distributed simulation.
arXiv Detail & Related papers (2020-02-26T12:53:04Z) - Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms [39.746670539407084]
We consider the problem of sampling from a strongly log-concave density in $bbRd$.
We prove an information theoretic lower bound on the number of gradient queries of the log density needed.
arXiv Detail & Related papers (2020-02-01T23:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.