Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling
- URL: http://arxiv.org/abs/2311.00797v2
- Date: Fri, 10 Nov 2023 22:49:40 GMT
- Title: Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling
- Authors: Nikolaos Evangelou, Tianqi Cui, Juan M. Bello-Rivas, Alexei Makeev,
Ioannis G. Kevrekidis
- Abstract summary: We study the tipping point collective dynamics of an adaptive susceptible-infected (SIS) epidemiological network in a data-driven, machine learning-assisted manner.
We identify a complex effective differential equation (eSDE) in terms physically meaningful coarse mean-field variables.
We study the statistics of rare events both through repeated brute force simulations and by using established mathematical/computational tools.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the tipping point collective dynamics of an adaptive
susceptible-infected-susceptible (SIS) epidemiological network in a
data-driven, machine learning-assisted manner. We identify a
parameter-dependent effective stochastic differential equation (eSDE) in terms
of physically meaningful coarse mean-field variables through a deep-learning
ResNet architecture inspired by numerical stochastic integrators. We construct
an approximate effective bifurcation diagram based on the identified drift term
of the eSDE and contrast it with the mean-field SIS model bifurcation diagram.
We observe a subcritical Hopf bifurcation in the evolving network's effective
SIS dynamics, that causes the tipping point behavior; this takes the form of
large amplitude collective oscillations that spontaneously -- yet rarely --
arise from the neighborhood of a (noisy) stationary state. We study the
statistics of these rare events both through repeated brute force simulations
and by using established mathematical/computational tools exploiting the
right-hand-side of the identified SDE. We demonstrate that such a collective
SDE can also be identified (and the rare events computations also performed) in
terms of data-driven coarse observables, obtained here via manifold learning
techniques, in particular Diffusion Maps. The workflow of our study is
straightforwardly applicable to other complex dynamics problems exhibiting
tipping point dynamics.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
This paper presents a novel method for learning network topology and internal dynamics.
It is compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
Our method achieves state-of-the-art performance compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
arXiv Detail & Related papers (2022-06-02T03:22:34Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Imitating Deep Learning Dynamics via Locally Elastic Stochastic
Differential Equations [20.066631203802302]
We study the evolution of features during deep learning training using a set of differential equations (SDEs) that each corresponds to a training sample.
Our results shed light on the decisive role of local elasticity in the training dynamics of neural networks.
arXiv Detail & Related papers (2021-10-11T17:17:20Z) - Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning [0.46180371154032895]
We approximate drift and diffusivity functions in effective SDE through neural networks.
Our approach does not require long trajectories, works on scattered snapshot data, and is designed to naturally handle different time steps per snapshot.
arXiv Detail & Related papers (2021-06-10T13:00:18Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
We use a recognition network to increase the observed space dimensionality during the reconstruction of the phase space.
Our validation shows that this approach not only recovers a state space that resembles the original one, but it is also able to synthetize new time series.
arXiv Detail & Related papers (2020-10-13T10:10:24Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
Learning nonlinear dynamics from aggregate data is a challenging problem because the full trajectory of each individual is not available.
We propose a novel method using the weak form of Fokker Planck Equation (FPE) to describe the density evolution of data in a sampled form.
In such a sample-based framework we are able to learn the nonlinear dynamics from aggregate data without explicitly solving the partial differential equation (PDE) FPE.
arXiv Detail & Related papers (2020-02-10T03:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.