Inclusiveness Matters: A Large-Scale Analysis of User Feedback
- URL: http://arxiv.org/abs/2311.00984v1
- Date: Thu, 2 Nov 2023 04:05:46 GMT
- Title: Inclusiveness Matters: A Large-Scale Analysis of User Feedback
- Authors: Nowshin Nawar Arony, Ze Shi Li, Bowen Xu and Daniela Damian
- Abstract summary: We leverage user feedback from three popular online sources, Reddit, Google Play Store, and Twitter, for 50 of the most popular apps in the world.
Using a Socio-Technical Grounded Theory approach, we analyzed 23,107 posts across the three sources and identified 1,211 inclusiveness related posts.
Our study provides an in-depth view of inclusiveness-related user feedback from most popular apps and online sources.
- Score: 7.8788463395442045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era of rapidly expanding software usage, catering to the diverse needs
of users from various backgrounds has become a critical challenge.
Inclusiveness, representing a core human value, is frequently overlooked during
software development, leading to user dissatisfaction. Users often engage in
discourse on online platforms where they indicate their concerns. In this
study, we leverage user feedback from three popular online sources, Reddit,
Google Play Store, and Twitter, for 50 of the most popular apps in the world to
reveal the inclusiveness-related concerns from end users. Using a
Socio-Technical Grounded Theory approach, we analyzed 23,107 posts across the
three sources and identified 1,211 inclusiveness related posts. We organize our
empirical results in a taxonomy for inclusiveness comprising 6 major
categories: Fairness, Technology, Privacy, Demography, Usability, and Other
Human Values. To explore automated support to identifying inclusiveness-related
posts, we experimented with five state-of-the-art pre-trained large language
models (LLMs) and found that these models' effectiveness is high and yet varied
depending on the data source. GPT-2 performed best on Reddit, BERT on the
Google Play Store, and BART on Twitter. Our study provides an in-depth view of
inclusiveness-related user feedback from most popular apps and online sources.
We provide implications and recommendations that can be used to bridge the gap
between user expectations and software so that software developers can resonate
with the varied and evolving needs of the wide spectrum of users.
Related papers
- SADAS: A Dialogue Assistant System Towards Remediating Norm Violations
in Bilingual Socio-Cultural Conversations [56.31816995795216]
Socially-Aware Dialogue Assistant System (SADAS) is designed to ensure that conversations unfold with respect and understanding.
Our system's novel architecture includes: (1) identifying the categories of norms present in the dialogue, (2) detecting potential norm violations, (3) evaluating the severity of these violations, and (4) implementing targeted remedies to rectify the breaches.
arXiv Detail & Related papers (2024-01-29T08:54:21Z) - Knowledge-Augmented Large Language Models for Personalized Contextual
Query Suggestion [16.563311988191636]
We construct an entity-centric knowledge store for each user based on their search and browsing activities on the web.
This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs.
arXiv Detail & Related papers (2023-11-10T01:18:47Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
We present textscUltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset.
Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models.
arXiv Detail & Related papers (2023-10-02T17:40:01Z) - Proactive Prioritization of App Issues via Contrastive Learning [2.6763498831034043]
We propose a new framework, PPrior, that enables proactive prioritization of app issues through identifying prominent reviews.
PPrior employs a pre-trained T5 model and works in three phases.
Phase one adapts the pre-trained T5 model to the user reviews data in a self-supervised fashion.
Phase two, we leverage contrastive training to learn a generic and task-independent representation of user reviews.
arXiv Detail & Related papers (2023-03-12T06:23:10Z) - Identifying Experts in Question & Answer Portals: A Case Study on Data
Science Competencies in Reddit [0.0]
We inspect the feasibility of identifying data science experts in Reddit.
Our method is based on the manual coding results where two data science experts labelled not only expert and non-expert comments, but also out-of-scope comments.
We present a semi-supervised approach which combines 1,113 labelled comments with 100,226 unlabelled comments during training.
arXiv Detail & Related papers (2022-04-08T14:30:59Z) - The Challenge of Understanding What Users Want: Inconsistent Preferences
and Engagement Optimization [2.690930520747925]
We develop a model of media consumption where users have inconsistent preferences.
We show how our model of users' preference inconsistencies produces phenomena that are familiar from everyday experience.
arXiv Detail & Related papers (2022-02-23T20:45:31Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
We present an approach for predicting trust links between peers in social media.
We propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis.
Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset.
arXiv Detail & Related papers (2021-11-11T19:40:51Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
We provide a systematic review of the techniques used in current conversational recommender systems (CRSs)
We summarize the key challenges of developing CRSs into five directions.
These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI)
arXiv Detail & Related papers (2021-01-23T08:53:15Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
We propose a novel emerging issue detection approach named MERIT.
Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version.
Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT.
arXiv Detail & Related papers (2020-08-23T06:34:05Z) - Topic Modeling on User Stories using Word Mover's Distance [4.378337862197529]
This paper focuses on topic modeling as a means to identify topics within a large set of crowd-generated user stories.
We evaluate the approaches on a publicly available set of 2,966 user stories written and categorized by crowd workers.
arXiv Detail & Related papers (2020-07-10T11:05:42Z) - Study of the usability of LinkedIn: a social media platform meant to
connect employers and employees [91.3755431537592]
This paper is assessing LinkedIn's usability using both user and expert evaluation.
The overall usability of LinkedIn application has been measured by using SUS (System Usability Scale)
arXiv Detail & Related papers (2020-06-06T18:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.