VideoDreamer: Customized Multi-Subject Text-to-Video Generation with Disen-Mix Finetuning on Language-Video Foundation Models
- URL: http://arxiv.org/abs/2311.00990v2
- Date: Mon, 14 Apr 2025 02:18:19 GMT
- Title: VideoDreamer: Customized Multi-Subject Text-to-Video Generation with Disen-Mix Finetuning on Language-Video Foundation Models
- Authors: Hong Chen, Xin Wang, Guanning Zeng, Yipeng Zhang, Yuwei Zhou, Feilin Han, Yaofei Wu, Wenwu Zhu,
- Abstract summary: VideoDreamer is a novel framework for customized multi-subject text-to-video generation.<n>It can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects.
- Score: 43.46536102838717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Customized text-to-video generation aims to generate text-guided videos with user-given subjects, which has gained increasing attention. However, existing works are primarily limited to single-subject oriented text-to-video generation, leaving the more challenging problem of customized multi-subject generation unexplored. In this paper, we fill this gap and propose a novel VideoDreamer framework, which can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects. Specifically, VideoDreamer adopts the pretrained Stable Diffusion with temporal modules as its base video generator, taking the power of the text-to-image model to generate diversified content. The video generator is further customized for multi-subjects, which leverages the proposed Disen-Mix Finetuning and Human-in-the-Loop Re-finetuning strategy, to tackle the attribute binding problem of multi-subject generation. Additionally, we present a disentangled motion customization strategy to finetune the temporal modules so that we can generate videos with both customized subjects and motions. To evaluate the performance of customized multi-subject text-to-video generation, we introduce the MultiStudioBench benchmark. Extensive experiments demonstrate the remarkable ability of VideoDreamer to generate videos with new content such as new events and backgrounds, tailored to the customized multiple subjects.
Related papers
- CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance [34.345125922868]
We propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM)
Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort.
Our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation.
arXiv Detail & Related papers (2025-03-13T14:07:58Z) - Phantom: Subject-consistent video generation via cross-modal alignment [16.777805813950486]
We propose a unified video generation framework for both single- and multi-subject references.
The proposed method achieves high-fidelity subject-consistent video generation while addressing issues of image content leakage and multi-subject confusion.
arXiv Detail & Related papers (2025-02-16T11:02:50Z) - DisenStudio: Customized Multi-subject Text-to-Video Generation with Disentangled Spatial Control [48.41743234012456]
DisenStudio is a novel framework that can generate text-guided videos for customized multiple subjects.
DisenStudio enhances a pretrained diffusion-based text-to-video model with our proposed spatial-disentangled cross-attention mechanism.
We conduct extensive experiments to demonstrate our proposed DisenStudio significantly outperforms existing methods in various metrics.
arXiv Detail & Related papers (2024-05-21T13:44:55Z) - StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation [117.13475564834458]
We propose a new way of self-attention calculation, termed Consistent Self-Attention.
To extend our method to long-range video generation, we introduce a novel semantic space temporal motion prediction module.
By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos.
arXiv Detail & Related papers (2024-05-02T16:25:16Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects [61.323597069037056]
Current approaches for personalizing text-to-video generation suffer from tackling multiple subjects.
We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects.
arXiv Detail & Related papers (2024-01-18T13:23:51Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
We introduce a novel diffusion-based video generation method, generating a video showing multiple events given multiple individual sentences from the user.
Our method does not require a large-scale video dataset since our method uses a pre-trained text-to-video generative model without a fine-tuning process.
Our proposed method is superior to other video-generative models in terms of temporal coherency of content and semantics.
arXiv Detail & Related papers (2023-12-07T06:53:25Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction.
We propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions.
Our model generates transition videos that ensure coherence and visual quality.
arXiv Detail & Related papers (2023-10-31T17:58:17Z) - VideoDirectorGPT: Consistent Multi-scene Video Generation via LLM-Guided Planning [62.51232333352754]
VideoDirectorGPT is a novel framework for consistent multi-scene video generation.
Our proposed framework substantially improves layout and movement control in both single- and multi-scene video generation.
arXiv Detail & Related papers (2023-09-26T17:36:26Z) - Gen-L-Video: Multi-Text to Long Video Generation via Temporal
Co-Denoising [43.35391175319815]
This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos.
We introduce a novel paradigm dubbed Gen-L-Video, capable of extending off-the-shelf short video diffusion models.
Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models.
arXiv Detail & Related papers (2023-05-29T17:38:18Z) - Make-A-Protagonist: Generic Video Editing with An Ensemble of Experts [116.05656635044357]
We propose a generic video editing framework called Make-A-Protagonist.
Specifically, we leverage multiple experts to parse source video, target visual and textual clues, and propose a visual-textual-based video generation model.
Results demonstrate the versatile and remarkable editing capabilities of Make-A-Protagonist.
arXiv Detail & Related papers (2023-05-15T17:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.