VIGraph: Generative Self-supervised Learning for Class-Imbalanced Node Classification
- URL: http://arxiv.org/abs/2311.01191v2
- Date: Wed, 27 Mar 2024 10:12:31 GMT
- Title: VIGraph: Generative Self-supervised Learning for Class-Imbalanced Node Classification
- Authors: Yulan Hu, Sheng Ouyang, Zhirui Yang, Yong Liu,
- Abstract summary: Class imbalance in graph data presents significant challenges for node classification.
Existing methods, such as SMOTE-based approaches, exhibit limitations in constructing imbalanced graphs.
We introduce VIGraph, a simple yet effective generative SSL approach that relies on the Variational GAE as the fundamental model.
- Score: 9.686218058331061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class imbalance in graph data presents significant challenges for node classification. While existing methods, such as SMOTE-based approaches, partially mitigate this issue, they still exhibit limitations in constructing imbalanced graphs. Generative self-supervised learning (SSL) methods, exemplified by graph autoencoders (GAEs), offer a promising solution by directly generating minority nodes from the data itself, yet their potential remains underexplored. In this paper, we delve into the shortcomings of SMOTE-based approaches in the construction of imbalanced graphs. Furthermore, we introduce VIGraph, a simple yet effective generative SSL approach that relies on the Variational GAE as the fundamental model. VIGraph strictly adheres to the concept of imbalance when constructing imbalanced graphs and innovatively leverages the variational inference (VI) ability of Variational GAE to generate nodes for minority classes. VIGraph introduces comprehensive training strategies, including cross-view contrastive learning at the decoding phase to capture semantic knowledge, adjacency matrix reconstruction to preserve graph structure, and alignment strategy to ensure stable training. VIGraph can generate high-quality nodes directly usable for classification, eliminating the need to integrate the generated nodes back to the graph as well as additional retraining found in SMOTE-based methods. We conduct extensive experiments, results from which demonstrate the superiority and generality of our approach.
Related papers
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
Graph autoencoders (GAEs) rely on distance-based criteria, such as mean-square-error (MSE) to reconstruct the input graph.
relying solely on a single reconstruction criterion may lead to a loss of distinctiveness in the reconstructed graph.
We have developed a simple yet effective strategy to preserve the necessary distinctness in the reconstructed graph.
arXiv Detail & Related papers (2024-06-25T12:54:35Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.