Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets
- URL: http://arxiv.org/abs/2311.01588v3
- Date: Mon, 15 Apr 2024 13:56:24 GMT
- Title: Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets
- Authors: Andrea Roncoli, Aleksandra Ćiprijanović, Maggie Voetberg, Francisco Villaescusa-Navarro, Brian Nord,
- Abstract summary: We show that DA-GNN achieves higher accuracy and robustness on cross-dataset tasks.
This shows that DA-GNNs are a promising method for extracting domain-independent cosmological information.
- Score: 40.19690479537335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have been shown to outperform methods that rely on summary statistics, like the power spectrum, in extracting information from complex cosmological data sets. However, due to differences in the subgrid physics implementation and numerical approximations across different simulation suites, models trained on data from one cosmological simulation show a drop in performance when tested on another. Similarly, models trained on any of the simulations would also likely experience a drop in performance when applied to observational data. Training on data from two different suites of the CAMELS hydrodynamic cosmological simulations, we examine the generalization capabilities of Domain Adaptive Graph Neural Networks (DA-GNNs). By utilizing GNNs, we capitalize on their capacity to capture structured scale-free cosmological information from galaxy distributions. Moreover, by including unsupervised domain adaptation via Maximum Mean Discrepancy (MMD), we enable our models to extract domain-invariant features. We demonstrate that DA-GNN achieves higher accuracy and robustness on cross-dataset tasks (up to $28\%$ better relative error and up to almost an order of magnitude better $\chi^2$). Using data visualizations, we show the effects of domain adaptation on proper latent space data alignment. This shows that DA-GNNs are a promising method for extracting domain-independent cosmological information, a vital step toward robust deep learning for real cosmic survey data.
Related papers
- A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing [1.96862953848735]
We benchmark the ability of graph neural networks to simultaneously capture local clustering environments and long-range correlations.
We find that current architectures fail to capture information from long-range correlations as effectively as domain-specific baselines.
arXiv Detail & Related papers (2024-10-27T16:58:48Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
This paper introduces a novel simulation-enhanced data augmentation method for machine learning pathloss prediction.
Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets.
The integration of synthetic data significantly improves the generalizability of the model in different environments.
arXiv Detail & Related papers (2024-02-03T00:38:08Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for
Parameter Space Exploration of Unstructured-Mesh Ocean Simulations [8.851780016570311]
We propose a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations.
GNN-Surrogate predicts the output field with given simulation parameters.
We give evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate.
arXiv Detail & Related papers (2022-02-18T01:51:09Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - DeepMerge II: Building Robust Deep Learning Algorithms for Merging
Galaxy Identification Across Domains [0.0]
In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations.
We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms.
We demonstrate this on two examples: between two Illustris-1 simulated datasets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey.
arXiv Detail & Related papers (2021-03-02T00:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.