Optimal Image Transport on Sparse Dictionaries
- URL: http://arxiv.org/abs/2311.01984v1
- Date: Fri, 3 Nov 2023 15:37:01 GMT
- Title: Optimal Image Transport on Sparse Dictionaries
- Authors: Junqing Huang, Haihui Wang, Andreas Weiermann, Michael Ruzhansky
- Abstract summary: We derive a novel optimal image transport algorithm over sparse dictionaries by taking advantage of Sparse Representation (SR) and Optimal Transport (OT)
We demonstrate its versatility and many benefits to different image-to-image translation tasks, in particular image color transform and artistic style transfer, and show the plausible results for photo-realistic transferred effects.
- Score: 2.7855886538423182
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we derive a novel optimal image transport algorithm over
sparse dictionaries by taking advantage of Sparse Representation (SR) and
Optimal Transport (OT). Concisely, we design a unified optimization framework
in which the individual image features (color, textures, styles, etc.) are
encoded using sparse representation compactly, and an optimal transport plan is
then inferred between two learned dictionaries in accordance with the encoding
process. This paradigm gives rise to a simple but effective way for
simultaneous image representation and transformation, which is also empirically
solvable because of the moderate size of sparse coding and optimal transport
sub-problems. We demonstrate its versatility and many benefits to different
image-to-image translation tasks, in particular image color transform and
artistic style transfer, and show the plausible results for photo-realistic
transferred effects.
Related papers
- PixelShuffler: A Simple Image Translation Through Pixel Rearrangement [0.0]
Style transfer is a widely researched application of image-to-image translation, where the goal is to synthesize an image that combines the content of one image with the style of another.
Existing state-of-the-art methods often rely on complex neural networks, including diffusion models and language models, to achieve high-quality style transfer.
We propose a novel pixel shuffle method that addresses the image-to-image translation problem generally with a specific demonstrative application in style transfer.
arXiv Detail & Related papers (2024-10-03T22:08:41Z) - High-Resolution Image Translation Model Based on Grayscale Redefinition [3.6996084306161277]
We propose an innovative method for image translation between different domains.
For high-resolution image translation tasks, we use a grayscale adjustment method to achieve pixel-level translation.
For other tasks, we utilize the Pix2PixHD model with a coarse-to-fine generator, multi-scale discriminator, and improved loss to enhance the image translation performance.
arXiv Detail & Related papers (2024-03-26T12:21:47Z) - Optimize and Reduce: A Top-Down Approach for Image Vectorization [12.998637003026273]
We propose Optimize & Reduce (O&R), a top-down approach to vectorization that is both fast and domain-agnostic.
O&R aims to attain a compact representation of input images by iteratively optimizing B'ezier curve parameters.
We demonstrate that our method is domain agnostic and outperforms existing works in both reconstruction and perceptual quality for a fixed number of shapes.
arXiv Detail & Related papers (2023-12-18T16:41:03Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GAN is shown to be effective for learning to generate realistic and diverse scenery images.
For more realistic and diverse image generation we introduce style reference image.
We validate the proposed algorithm for image-to-image translation and stylizing outdoor images.
arXiv Detail & Related papers (2023-11-07T10:29:16Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - PI-Trans: Parallel-ConvMLP and Implicit-Transformation Based GAN for
Cross-View Image Translation [84.97160975101718]
We propose a novel generative adversarial network, PI-Trans, which consists of a novel Parallel-ConvMLP module and an Implicit Transformation module at multiple semantic levels.
PI-Trans achieves the best qualitative and quantitative performance by a large margin compared to the state-of-the-art methods on two challenging datasets.
arXiv Detail & Related papers (2022-07-09T10:35:44Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
Exemplar-based image translation establishes dense correspondences between a conditional input and an exemplar from two different domains.
Existing work builds the cross-domain correspondences implicitly by minimizing feature-wise distances across the two domains.
We design a Marginal Contrastive Learning Network (MCL-Net) that explores contrastive learning to learn domain-invariant features for realistic exemplar-based image translation.
arXiv Detail & Related papers (2022-04-01T13:55:44Z) - Unbalanced Feature Transport for Exemplar-based Image Translation [51.54421432912801]
This paper presents a general image translation framework that incorporates optimal transport for feature alignment between conditional inputs and style exemplars in image translation.
We show that our method achieves superior image translation qualitatively and quantitatively as compared with the state-of-the-art.
arXiv Detail & Related papers (2021-06-19T12:07:48Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation.
We use pixel-wise networks; that is, each pixel is processed independently of others.
Our model is up to 18x faster than state-of-the-art baselines.
arXiv Detail & Related papers (2020-12-05T10:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.