Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading
- URL: http://arxiv.org/abs/2311.02088v1
- Date: Tue, 24 Oct 2023 15:58:58 GMT
- Title: Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading
- Authors: Koti S. Jaddu and Paul A. Bilokon
- Abstract summary: This work focuses on forecasting returns across multiple horizons using order flow and training three temporal-difference imbalance learning models for five financial instruments.
The results prove potential but require further minimal modifications for consistently profitable trading to fully handle retail trading costs, slippage, and spread fluctuation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-frequency trading is prevalent, where automated decisions must be made
quickly to take advantage of price imbalances and patterns in price action that
forecast near-future movements. While many algorithms have been explored and
tested, analytical methods fail to harness the whole nature of the market
environment by focusing on a limited domain. With the evergrowing machine
learning field, many large-scale end-to-end studies on raw data have been
successfully employed to increase the domain scope for profitable trading but
are very difficult to replicate. Combining deep learning on the order books
with reinforcement learning is one way of breaking down large-scale end-to-end
learning into more manageable and lightweight components for reproducibility,
suitable for retail trading.
The following work focuses on forecasting returns across multiple horizons
using order flow imbalance and training three temporal-difference learning
models for five financial instruments to provide trading signals. The
instruments used are two foreign exchange pairs (GBPUSD and EURUSD), two
indices (DE40 and FTSE100), and one commodity (XAUUSD). The performances of
these 15 agents are evaluated through backtesting simulation, and successful
models proceed through to forward testing on a retail trading platform. The
results prove potential but require further minimal modifications for
consistently profitable trading to fully handle retail trading costs, slippage,
and spread fluctuation.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading [6.305870529904885]
We propose MOT, which designs multiple actors with disentangled representation learning to model the different patterns of the market.
Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks.
arXiv Detail & Related papers (2024-06-03T01:42:52Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
We propose a Reinforcement Learning (RL) algorithm that trades based on signals from a learned predictive model.
We test our algorithm on 20+ years of equity data from Bursa Malaysia.
arXiv Detail & Related papers (2023-07-18T16:00:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
We study how a principal can efficiently and effectively intervene on the rewards of a previously unseen learning agent in order to induce desirable outcomes.
This is relevant to many real-world settings like auctions or taxation, where the principal may not know the learning behavior nor the rewards of real people.
We introduce MERMAIDE, a model-based meta-learning framework to train a principal that can quickly adapt to out-of-distribution agents.
arXiv Detail & Related papers (2023-04-10T15:44:50Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Reinforcement Learning for Systematic FX Trading [0.0]
We conduct a detailed experiment on major cash pairs, accurately accounting for transaction and funding costs.
These sources of profit and loss, including the price trends that occur in the currency markets, are made available to our recurrent reinforcement learner.
This is despite forcing the model to trade at the close of the trading day 5pm EST, when trading costs are statistically the most expensive.
arXiv Detail & Related papers (2021-10-10T09:44:29Z) - Deep Reinforcement Learning in Quantitative Algorithmic Trading: A
Review [0.0]
Deep Reinforcement Learning agents proved to be to a force to be reckon with in many games like Chess and Go.
This paper reviews the progress made so far with deep reinforcement learning in the subdomain of AI in finance.
We conclude that DRL in stock trading has showed huge applicability potential rivalling professional traders under strong assumptions.
arXiv Detail & Related papers (2021-05-31T22:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.