Noise-robust proofs of quantum network nonlocality
- URL: http://arxiv.org/abs/2311.02182v2
- Date: Sun, 11 Feb 2024 20:45:13 GMT
- Title: Noise-robust proofs of quantum network nonlocality
- Authors: Sadra Boreiri, Bora Ulu, Nicolas Brunner, Pavel Sekatski
- Abstract summary: We present noise-robust proofs of network quantum nonlocality, for a class of quantum distributions on the triangle network.
Our work opens interesting perspectives towards the practical implementation of quantum network nonlocality.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks allow for novel forms of quantum nonlocality. By exploiting
the combination of entangled states and entangled measurements, strong nonlocal
correlations can be generated across the entire network. So far, all proofs of
this effect are essentially restricted to the idealized case of pure entangled
states and projective local measurements. Here we present noise-robust proofs
of network quantum nonlocality, for a class of quantum distributions on the
triangle network that are based on entangled states and entangled measurements.
The key ingredient is a result of approximate rigidity for local distributions
that satisfy the so-called ``parity token counting'' property with high
probability. Considering quantum distributions obtained with imperfect sources,
we obtain noise robustness up to $\sim 80\%$ for dephasing noise and up to
$\sim 0.67\%$ for white noise. Additionally, we can prove that all
distributions in the vicinity of some ideal quantum distributions are nonlocal,
with a bound on the total-variation distance. Our work opens interesting
perspectives towards the practical implementation of quantum network
nonlocality.
Related papers
- Experimental quantum triangle network nonlocality with an AlGaAs multiplexed entangled photon source [0.9092013845117769]
We show that quantum nonlocality without inputs can be demonstrated for sources with an arbitrarily small level of independence.
We use a simulated triangle network to violate experimentally for the first time a Bell-like inequality.
Our results allow us to deepen our understanding of network nonlocality while also pushing its practical relevance for quantum communication networks.
arXiv Detail & Related papers (2024-10-09T13:21:11Z) - Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Certification of non-classicality in all links of a photonic star
network without assuming quantum mechanics [52.95080735625503]
Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical.
We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements.
arXiv Detail & Related papers (2022-12-19T19:00:01Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Robust Multipartite Entanglement Without Entanglement Breaking [0.0]
Entangled systems in experiments may be lost or offline in distributed quantum information processing.
We propose a model for characterizing all entangled states that are breaking for losing particles.
Results show distinctive features of both single entangled systems and entangled quantum networks.
arXiv Detail & Related papers (2021-06-17T04:22:09Z) - Full network nonlocality [68.8204255655161]
We introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources.
We show that the most well-known network Bell test does not witness full network nonlocality.
More generally, we point out that established methods for analysing local and theory-independent correlations in networks can be combined in order to deduce sufficient conditions for full network nonlocality.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Maximal qubit violation of n-local inequalities in quantum network [0.0]
Source independent quantum networks are considered as a natural generalization to the Bell scenario.
We consider the complexities in the quantum networks with an arbitrary number of parties distributed in chain-shaped and star-shaped networks.
arXiv Detail & Related papers (2020-11-06T18:45:07Z) - Characterizing Quantum Correlations In Fixed Input $n$-Local Network
Scenario [0.0]
Quantum nonlocality can be exploited even when all the parties do not have freedom to select inputs randomly.
One can utilize such a feature of quantum networks for purpose of entanglement detection of bipartite quantum states.
arXiv Detail & Related papers (2020-04-17T13:19:50Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.