Understanding the Natural Language of DNA using Encoder-Decoder Foundation Models with Byte-level Precision
- URL: http://arxiv.org/abs/2311.02333v3
- Date: Thu, 22 Aug 2024 20:18:06 GMT
- Title: Understanding the Natural Language of DNA using Encoder-Decoder Foundation Models with Byte-level Precision
- Authors: Aditya Malusare, Harish Kothandaraman, Dipesh Tamboli, Nadia A. Lanman, Vaneet Aggarwal,
- Abstract summary: This paper presents the Ensemble Nucleotide Byte-level-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture.
We use Masked Language Modeling to pre-train the foundation model using reference genome sequences and apply it in the following downstream tasks.
In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.
- Score: 26.107996342704915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a sub-quadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pre-train the foundation model using reference genome sequences and apply it in the following downstream tasks: (1) identification of enhancers, promotors and splice sites, (2) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (3) identification of biological function annotations of genomic sequences, and (4) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.
Related papers
- Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Real-World Compositional Generalization with Disentangled
Sequence-to-Sequence Learning [81.24269148865555]
A recently proposed Disentangled sequence-to-sequence model (Dangle) shows promising generalization capability.
We introduce two key modifications to this model which encourage more disentangled representations and improve its compute and memory efficiency.
Specifically, instead of adaptively re-encoding source keys and values at each time step, we disentangle their representations and only re-encode keys periodically.
arXiv Detail & Related papers (2022-12-12T15:40:30Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - ASTRO: An AST-Assisted Approach for Generalizable Neural Clone Detection [12.794933981621941]
Most neural clone detection methods do not generalize beyond the scope of clones that appear in the training dataset.
We present an Abstract Syntax Tree (AST) assisted approach for generalizable neural clone detection, or ASTRO.
Our experimental results show that ASTRO improves state-of-the-art neural clone detection approaches in both recall and F-1 scores.
arXiv Detail & Related papers (2022-08-17T04:50:51Z) - Transformer with Tree-order Encoding for Neural Program Generation [8.173517923612426]
We introduce a tree-based positional encoding and a shared natural-language subword vocabulary for Transformers.
Our findings suggest that employing a tree-based positional encoding in combination with a shared natural-language subword vocabulary improves generation performance over sequential positional encodings.
arXiv Detail & Related papers (2022-05-30T12:27:48Z) - Epigenomic language models powered by Cerebras [0.0]
Epigenomic BERT (or EBERT) learns representations based on both DNA sequence and paired epigenetic state inputs.
We show EBERT's transfer learning potential by demonstrating strong performance on a cell type-specific transcription factor binding prediction task.
Our fine-tuned model exceeds state of the art performance on 4 of 13 evaluation datasets from ENCODE-DREAM benchmarks and earns an overall rank of 3rd on the challenge leaderboard.
arXiv Detail & Related papers (2021-12-14T17:23:42Z) - On Sparsifying Encoder Outputs in Sequence-to-Sequence Models [90.58793284654692]
We take Transformer as the testbed and introduce a layer of gates in-between the encoder and the decoder.
The gates are regularized using the expected value of the sparsity-inducing L0penalty.
We investigate the effects of this sparsification on two machine translation and two summarization tasks.
arXiv Detail & Related papers (2020-04-24T16:57:52Z) - Consistent Multiple Sequence Decoding [36.46573114422263]
We introduce a consistent multiple sequence decoding architecture.
This architecture allows for consistent and simultaneous decoding of an arbitrary number of sequences.
We show the efficacy of our consistent multiple sequence decoder on the task of dense relational image captioning.
arXiv Detail & Related papers (2020-04-02T00:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.