Steady-State Analysis and Online Learning for Queues with Hawkes
Arrivals
- URL: http://arxiv.org/abs/2311.02577v2
- Date: Mon, 13 Nov 2023 07:16:00 GMT
- Title: Steady-State Analysis and Online Learning for Queues with Hawkes
Arrivals
- Authors: Xinyun Chen and Guiyu Hong
- Abstract summary: We investigate the long-run behavior of single-server queues with Hawkes arrivals and general service distributions.
We develop an efficient numerical algorithm to solve the optimal staffing problem for the Hawkes queues in a data-driven manner.
- Score: 34.59794670349187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the long-run behavior of single-server queues with Hawkes
arrivals and general service distributions and related optimization problems.
In detail, utilizing novel coupling techniques, we establish finite moment
bounds for the stationary distribution of the workload and busy period
processes. In addition, we are able to show that, those queueing processes
converge exponentially fast to their stationary distribution. Based on these
theoretic results, we develop an efficient numerical algorithm to solve the
optimal staffing problem for the Hawkes queues in a data-driven manner.
Numerical results indicate a sharp difference in staffing for Hawkes queues,
compared to the classic GI/GI/1 model, especially in the heavy-traffic regime.
Related papers
- DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Quantifying the Cost of Learning in Queueing Systems [4.784875233446591]
Cost of Learning in Queueing (CLQ) is a new metric that quantifies the maximum increase in time-averaged queue length caused by parameter uncertainty.
We propose a unified analysis framework for CLQ that bridges Lyapunov and bandit analysis, provides guarantees for a wide range of algorithms, and could be of independent interest.
arXiv Detail & Related papers (2023-08-15T14:50:12Z) - Sinkhorn-Flow: Predicting Probability Mass Flow in Dynamical Systems
Using Optimal Transport [89.61692654941106]
We propose a new approach to predicting such mass flow over time using optimal transport.
We apply our approach to the task of predicting how communities will evolve over time in social network settings.
arXiv Detail & Related papers (2023-03-14T07:25:44Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Learning While Scheduling in Multi-Server Systems with Unknown
Statistics: MaxWeight with Discounted UCB [18.898514227870926]
This paper considers a multi-server system with multiple servers and multiple types of jobs, where different job types require different amounts of processing time at different servers.
The goal is to schedule jobs on servers without knowing the statistics of the processing times.
We propose a new algorithm, which combines the MaxWeight scheduling policy with discounted upper confidence bound (UCB) to simultaneously learn statistics and schedule jobs to servers.
arXiv Detail & Related papers (2022-09-02T15:37:02Z) - Learning Mean-Field Control for Delayed Information Load Balancing in
Large Queuing Systems [26.405495663998828]
In this work, we consider a multi-agent load balancing system, with delayed information, consisting of many clients (load balancers) and many parallel queues.
We apply policy gradient reinforcement learning algorithms to find an optimal load balancing solution.
Our approach is scalable but also shows good performance when compared to the state-of-the-art power-of-d variant of the Join-the-Shortest-Queue (JSQ)
arXiv Detail & Related papers (2022-08-09T13:47:19Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques.
Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort.
The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition.
arXiv Detail & Related papers (2022-04-16T12:03:52Z) - Scheduling in Parallel Finite Buffer Systems: Optimal Decisions under
Delayed Feedback [29.177402567437206]
We present a partially observable (PO) model that captures the scheduling decisions in parallel queuing systems under limited information of delayed acknowledgements.
We numerically show that the resulting policy outperforms other limited information scheduling strategies.
We show how our approach can optimise the real-time parallel processing by using network data provided by Kaggle.
arXiv Detail & Related papers (2021-09-17T13:45:02Z) - Optimal Resource Allocation for Serverless Queries [8.59568779761598]
Prior work focused on predicting peak allocation while ignoring aggressive trade-offs between resource allocation and run-time.
We introduce a system for optimal resource allocation that can predict performance with aggressive trade-offs, for both new and past observed queries.
arXiv Detail & Related papers (2021-07-19T02:55:48Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.