Get the Ball Rolling: Alerting Autonomous Robots When to Help to Close
the Healthcare Loop
- URL: http://arxiv.org/abs/2311.02602v1
- Date: Sun, 5 Nov 2023 08:57:59 GMT
- Title: Get the Ball Rolling: Alerting Autonomous Robots When to Help to Close
the Healthcare Loop
- Authors: Jiaxin Shen, Yanyao Liu, Ziming Wang, Ziyuan Jiao, Yufeng Chen,
Wenjuan Han
- Abstract summary: We introduce the Autonomous Helping Challenge, along with a crowd-sourcing large-scale dataset.
The goal is to create healthcare robots that possess the ability to determine when assistance is necessary.
We propose Helpy, a potential approach to close the healthcare loop in the learning-free setting.
- Score: 25.551355056830413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To facilitate the advancement of research in healthcare robots without human
intervention or commands, we introduce the Autonomous Helping Challenge, along
with a crowd-sourcing large-scale dataset. The goal is to create healthcare
robots that possess the ability to determine when assistance is necessary,
generate useful sub-tasks to aid in planning, carry out these plans through a
physical robot, and receive feedback from the environment in order to generate
new tasks and continue the process. Besides the general challenge in open-ended
scenarios, Autonomous Helping focuses on three specific challenges: autonomous
task generation, the gap between the current scene and static commonsense, and
the gap between language instruction and the real world. Additionally, we
propose Helpy, a potential approach to close the healthcare loop in the
learning-free setting.
Related papers
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Towards Privacy-Aware and Personalised Assistive Robots: A User-Centred Approach [55.5769013369398]
This research pioneers user-centric, privacy-aware technologies such as Federated Learning (FL)
FL enables collaborative learning without sharing sensitive data, addressing privacy and scalability issues.
This work includes developing solutions for smart wheelchair assistance, enhancing user independence and well-being.
arXiv Detail & Related papers (2024-05-23T13:14:08Z) - Growing from Exploration: A self-exploring framework for robots based on
foundation models [13.250831101705694]
We propose a framework named GExp, which enables robots to explore and learn autonomously without human intervention.
Inspired by the way that infants interact with the world, GExp encourages robots to understand and explore the environment with a series of self-generated tasks.
arXiv Detail & Related papers (2024-01-24T14:04:08Z) - How to Raise a Robot -- A Case for Neuro-Symbolic AI in Constrained Task
Planning for Humanoid Assistive Robots [4.286794014747407]
We explore the novel field of incorporating privacy, security, and access control constraints with robot task planning approaches.
We report preliminary results on the classical symbolic approach, deep-learned neural networks, and modern ideas using large language models as knowledge base.
arXiv Detail & Related papers (2023-12-14T11:09:50Z) - NOPA: Neurally-guided Online Probabilistic Assistance for Building
Socially Intelligent Home Assistants [79.27554831580309]
We study how to build socially intelligent robots to assist people in their homes.
We focus on assistance with online goal inference, where robots must simultaneously infer humans' goals.
arXiv Detail & Related papers (2023-01-12T18:59:34Z) - When to Ask for Help: Proactive Interventions in Autonomous
Reinforcement Learning [57.53138994155612]
A long-term goal of reinforcement learning is to design agents that can autonomously interact and learn in the world.
A critical challenge is the presence of irreversible states which require external assistance to recover from, such as when a robot arm has pushed an object off of a table.
We propose an algorithm that efficiently learns to detect and avoid states that are irreversible, and proactively asks for help in case the agent does enter them.
arXiv Detail & Related papers (2022-10-19T17:57:24Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
We propose an algorithm using intrinsic motivation to guide the learning of affordances for a mobile robot.
This algorithm is capable to autonomously discover, learn and adapt interrelated affordances without pre-programmed actions.
Once learned, these affordances may be used by the algorithm to plan sequences of actions in order to perform tasks of various difficulties.
arXiv Detail & Related papers (2020-09-23T07:18:21Z) - Enabling human-like task identification from natural conversation [7.00597813134145]
We provide a non-trivial method to combine an NLP engine and a planner such that a robot can successfully identify tasks and all the relevant parameters and generate an accurate plan for the task.
This work makes a significant stride towards enabling a human-like task understanding capability in a robot.
arXiv Detail & Related papers (2020-08-23T17:19:23Z) - AvE: Assistance via Empowerment [77.08882807208461]
We propose a new paradigm for assistance by instead increasing the human's ability to control their environment.
This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state.
arXiv Detail & Related papers (2020-06-26T04:40:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.