PermutEx: Feature-Extraction-Based Permutation -- A New Diffusion Scheme for Image Encryption Algorithms
- URL: http://arxiv.org/abs/2311.02795v1
- Date: Sun, 5 Nov 2023 23:46:25 GMT
- Title: PermutEx: Feature-Extraction-Based Permutation -- A New Diffusion Scheme for Image Encryption Algorithms
- Authors: Muhammad Shahbaz Khan, Jawad Ahmad, Ahmed Al-Dubai, Zakwan Jaroucheh, Nikolaos Pitropakis, William J. Buchanan,
- Abstract summary: This paper introduces PermutEx, a feature-extraction-based permutation method that scrambles pixels effectively.
The method effectively disrupts the correlation in information-rich areas within the image resulting in a correlation value of 0.000062.
- Score: 2.2351927942921366
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traditional permutation schemes mostly focus on random scrambling of pixels, often neglecting the intrinsic image information that could enhance diffusion in image encryption algorithms. This paper introduces PermutEx, a feature-extraction-based permutation method that utilizes inherent image features to scramble pixels effectively. Unlike random permutation schemes, PermutEx extracts the spatial frequency and local contrast features of the image and ranks each pixel based on this information, identifying which pixels are more important or information-rich based on texture and edge information. In addition, a unique permutation key is generated using the Logistic-Sine Map based on chaotic behavior. The ranked pixels are permuted in conjunction with this unique key, effectively permuting the original image into a scrambled version. Experimental results indicate that the proposed method effectively disrupts the correlation in information-rich areas within the image resulting in a correlation value of 0.000062. The effective scrambling of pixels, resulting in nearly zero correlation, makes this method suitable to be used as diffusion in image encryption algorithms.
Related papers
- Restoring Images in Adverse Weather Conditions via Histogram Transformer [75.74328579778049]
We propose an efficient Histogram Transformer (Histoformer) for restoring images affected by adverse weather.
It is powered by a mechanism dubbed histogram self-attention, which sorts and segments spatial features into intensity-based bins.
To boost histogram self-attention, we present a dynamic-range convolution enabling conventional convolution to conduct operation over similar pixels.
arXiv Detail & Related papers (2024-07-14T11:59:22Z) - An Effective Approach to Scramble Multiple Diagnostic Imageries Using Chaos-Based Cryptography [0.0]
We provide a chaotic system-based medical picture encryption method.
The permutation based on plain image and chaotic keys is offered to shuffle the plain picture's pixels to other rows and columns.
We analyze the chaotic behavior of the proposed system using various techniques and tests such as bifurcation plots, Lyapunov exponents, MSE, PSNR tests, and histogram analysis.
arXiv Detail & Related papers (2024-05-02T05:18:46Z) - Learning Invariant Inter-pixel Correlations for Superpixel Generation [12.605604620139497]
Learnable features exhibit constrained discriminative capability, resulting in unsatisfactory pixel grouping performance.
We propose the Content Disentangle Superpixel algorithm to selectively separate the invariant inter-pixel correlations and statistical properties.
The experimental results on four benchmark datasets demonstrate the superiority of our approach to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-02-28T09:46:56Z) - Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
We propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff.
Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features.
arXiv Detail & Related papers (2023-11-23T08:31:11Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Pixel Relationships-based Regularizer for Retinal Vessel Image
Segmentation [4.3251090426112695]
This study presents regularizers to give the pixel neighbor relationship information to the learning process.
Experiments show that our scheme successfully captures pixel neighbor relations and improves the performance of the convolutional neural network.
arXiv Detail & Related papers (2022-12-28T07:35:20Z) - Unsupervised Superpixel Generation using Edge-Sparse Embedding [18.92698251515116]
partitioning an image into superpixels based on the similarity of pixels with respect to features can significantly reduce data complexity and improve subsequent image processing tasks.
We propose a non-convolutional image decoder to reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image.
We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels.
arXiv Detail & Related papers (2022-11-28T15:55:05Z) - Adaptive Local Implicit Image Function for Arbitrary-scale
Super-resolution [61.95533972380704]
Local implicit image function (LIIF) denotes images as a continuous function where pixel values are expansion by using the corresponding coordinates as inputs.
LIIF can be adopted for arbitrary-scale image super-resolution tasks, resulting in a single effective and efficient model for various up-scaling factors.
We propose a novel adaptive local image function (A-LIIF) to alleviate this problem.
arXiv Detail & Related papers (2022-08-07T11:23:23Z) - Multiscale Analysis for Improving Texture Classification [62.226224120400026]
This paper employs the Gaussian-Laplacian pyramid to treat different spatial frequency bands of a texture separately.
We aggregate features extracted from gray and color texture images using bio-inspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix features, and Haralick statistical features into a single feature vector.
arXiv Detail & Related papers (2022-04-21T01:32:22Z) - Image Generation with Self Pixel-wise Normalization [17.147675335268282]
Region-adaptive normalization (RAN) methods have been widely used in the generative adversarial network (GAN)-based image-to-image translation technique.
This paper presents a novel normalization method, called self pixel-wise normalization (SPN), which effectively boosts the generative performance by performing the pixel-adaptive affine transformation without the mask image.
arXiv Detail & Related papers (2022-01-26T03:14:31Z) - Image Inpainting with Edge-guided Learnable Bidirectional Attention Maps [85.67745220834718]
We present an edge-guided learnable bidirectional attention map (Edge-LBAM) for improving image inpainting of irregular holes.
Our Edge-LBAM method contains dual procedures,including structure-aware mask-updating guided by predict edges.
Extensive experiments show that our Edge-LBAM is effective in generating coherent image structures and preventing color discrepancy and blurriness.
arXiv Detail & Related papers (2021-04-25T07:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.