A Generative Neural Network Approach for 3D Multi-Criteria Design
Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle
- URL: http://arxiv.org/abs/2311.03414v1
- Date: Mon, 6 Nov 2023 09:33:56 GMT
- Title: A Generative Neural Network Approach for 3D Multi-Criteria Design
Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle
- Authors: Christoph Petroll and Sebastian Eilermann and Philipp Hoefer and
Oliver Niggemann
- Abstract summary: We train a neural network to learn dependencies between functionalities and a geometry in a very effective way.
In this paper, we address a multi-criteria challenge for a 3D design use case related to an unmanned aerial vehicle (UAV) motor mount.
We demonstrate the ability to generate optimized designs under self-defined functionality conditions using the trained neural network.
- Score: 2.0700747055024284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most promising developments in computer vision in recent years is
the use of generative neural networks for functionality condition-based 3D
design reconstruction and generation. Here, neural networks learn dependencies
between functionalities and a geometry in a very effective way. For a neural
network the functionalities are translated in conditions to a certain geometry.
But the more conditions the design generation needs to reflect, the more
difficult it is to learn clear dependencies. This leads to a multi criteria
design problem due various conditions, which are not considered in the neural
network structure so far.
In this paper, we address this multi-criteria challenge for a 3D design use
case related to an unmanned aerial vehicle (UAV) motor mount. We generate
10,000 abstract 3D designs and subject them all to simulations for three
physical disciplines: mechanics, thermodynamics, and aerodynamics. Then, we
train a Conditional Variational Autoencoder (CVAE) using the geometry and
corresponding multicriteria functional constraints as input. We use our trained
CVAE as well as the Marching cubes algorithm to generate meshes for simulation
based evaluation. The results are then evaluated with the generated UAV
designs. Subsequently, we demonstrate the ability to generate optimized designs
under self-defined functionality conditions using the trained neural network.
Related papers
- VehicleSDF: A 3D generative model for constrained engineering design via surrogate modeling [3.746111274696241]
This work explores the use of 3D generative models to explore the design space in the context of vehicle development.
We generate diverse 3D models of cars that meet a given set of geometric specifications.
We also obtain quick estimates of performance parameters such as aerodynamic drag.
arXiv Detail & Related papers (2024-10-09T16:59:24Z) - Bayesian Mesh Optimization for Graph Neural Networks to Enhance Engineering Performance Prediction [1.6574413179773761]
In engineering design, surrogate models are widely employed to replace computationally expensive simulations.
We propose a Bayesian graph neural network (GNN) framework for a 3D deep-learning-based surrogate model.
Our framework determines the optimal size of mesh elements through Bayesian optimization, resulting in a high-accuracy surrogate model.
arXiv Detail & Related papers (2024-06-04T06:27:48Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Learning Effective NeRFs and SDFs Representations with 3D Generative
Adversarial Networks for 3D Object Generation: Technical Report for ICCV 2023
OmniObject3D Challenge [28.425698777641482]
We present a solution for 3D object generation of ICCV 2023 OmniObject3D Challenge.
We study learning effective NeRFs and SDFs representations with 3D Generative Adversarial Networks (GANs) for 3D object generation.
arXiv Detail & Related papers (2023-09-28T02:23:46Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Hierarchical Neural Coding for Controllable CAD Model Generation [34.14256897199849]
This paper presents a novel generative model for Computer Aided Design (CAD)
It represents high-level design concepts of a CAD model as a three-level hierarchical tree of neural codes.
It controls the generation or completion of CAD models by specifying the target design using a code tree.
arXiv Detail & Related papers (2023-06-30T21:49:41Z) - Surrogate Modeling of Car Drag Coefficient with Depth and Normal
Renderings [4.868319717279586]
We propose a new two-dimensional (2D) representation of 3D shapes to verify its effectiveness in predicting 3D car drag.
We construct a diverse dataset of 9,070 high-quality 3D car meshes labeled by drag coefficients.
Our experiments demonstrate that our model can accurately and efficiently evaluate drag coefficients with an $R2$ value above 0.84 for various car categories.
arXiv Detail & Related papers (2023-05-26T09:33:12Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.