Text Augmentations with R-drop for Classification of Tweets Self
Reporting Covid-19
- URL: http://arxiv.org/abs/2311.03420v1
- Date: Mon, 6 Nov 2023 14:18:16 GMT
- Title: Text Augmentations with R-drop for Classification of Tweets Self
Reporting Covid-19
- Authors: Sumam Francis, Marie-Francine Moens
- Abstract summary: This paper presents models created for the Social Media Mining for Health 2023 shared task.
Our approach involves a classification model that incorporates diverse textual augmentations.
Our system achieves an impressive F1 score of 0.877 on the test set.
- Score: 28.91836510067532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents models created for the Social Media Mining for Health
2023 shared task. Our team addressed the first task, classifying tweets that
self-report Covid-19 diagnosis. Our approach involves a classification model
that incorporates diverse textual augmentations and utilizes R-drop to augment
data and mitigate overfitting, boosting model efficacy. Our leading model,
enhanced with R-drop and augmentations like synonym substitution, reserved
words, and back translations, outperforms the task mean and median scores. Our
system achieves an impressive F1 score of 0.877 on the test set.
Related papers
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop.
Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety.
Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children.
We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets.
arXiv Detail & Related papers (2024-04-30T17:06:20Z) - Sequencing Matters: A Generate-Retrieve-Generate Model for Building
Conversational Agents [9.191944519634111]
The Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023.
Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate.
Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again.
arXiv Detail & Related papers (2023-11-16T02:37:58Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - TEDB System Description to a Shared Task on Euphemism Detection 2022 [0.0]
We considered Transformer-based models which are the current state-of-the-art methods for text classification.
Our best result of 0.816 F1-score consists of a euphemism-detection-finetuned/TimeLMs-pretrained RoBERTa model as a feature extractor.
arXiv Detail & Related papers (2023-01-16T20:37:56Z) - 5q032e@SMM4H'22: Transformer-based classification of premise in tweets
related to COVID-19 [2.3931689873603603]
We propose a predictive model based on transformer architecture to classify the presence of premise in Twitter texts.
Our experiments on a Twitter dataset showed that RoBERTa is superior to the other transformer models in the case of the premise prediction task.
arXiv Detail & Related papers (2022-09-08T14:46:28Z) - LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text
Retrieval [55.097573036580066]
Experimental results show that LaPraDoR achieves state-of-the-art performance compared with supervised dense retrieval models.
Compared to re-ranking, our lexicon-enhanced approach can be run in milliseconds (22.5x faster) while achieving superior performance.
arXiv Detail & Related papers (2022-03-11T18:53:12Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task.
We trained our models with the officially provided ASR and MT datasets.
To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning.
arXiv Detail & Related papers (2021-07-24T09:53:34Z) - Checkovid: A COVID-19 misinformation detection system on Twitter using
network and content mining perspectives [9.69596041242667]
During the COVID-19 pandemic, social media platforms were ideal for communicating due to social isolation and quarantine.
To tackle this problem, we present two COVID-19 related misinformation datasets on Twitter.
We propose a misinformation detection system comprising network-based and content-based processes based on machine learning algorithms and NLP techniques.
arXiv Detail & Related papers (2021-07-20T20:58:23Z) - CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using
Pre-trained Language Models [0.0]
We treat this as binary text classification problem and experiment with pre-trained language models.
Our first model which is based on CT-BERT achieves F1-score of 88.7% and second model which is ensemble of CT-BERT, RoBERTa and SVM achieves F1-score of 88.52%.
arXiv Detail & Related papers (2020-09-12T12:59:54Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.