Towards Generalised Pre-Training of Graph Models
- URL: http://arxiv.org/abs/2311.03976v3
- Date: Tue, 14 May 2024 12:46:35 GMT
- Title: Towards Generalised Pre-Training of Graph Models
- Authors: Alex O. Davies, Riku W. Green, Nirav S. Ajmeri, Telmo M. Silva Filho,
- Abstract summary: We present Topology Only Pre-Training, a graph pre-training method based on node and edge feature exclusion.
Models show positive transfer on evaluation datasets from multiple domains, including domains not present in pre-training data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The principal benefit of unsupervised representation learning is that a pre-trained model can be fine-tuned where data or labels are scarce. Existing approaches for graph representation learning are domain specific, maintaining consistent node and edge features across the pre-training and target datasets. This has precluded transfer to multiple domains. In this work we present Topology Only Pre-Training, a graph pre-training method based on node and edge feature exclusion. Separating graph learning into two stages, topology and features, we use contrastive learning to pre-train models over multiple domains. These models show positive transfer on evaluation datasets from multiple domains, including domains not present in pre-training data. On 75% of experiments, ToP models perform significantly ($P \leq 0.01$) better than a supervised baseline. These results include when node and edge features are used in evaluation, where performance is significantly better on 85.7% of tasks compared to single-domain or non-pre-trained models. We further show that out-of-domain topologies can produce more useful pre-training than in-domain. We show better transfer from non-molecule pre-training, compared to molecule pre-training, on 79% of molecular benchmarks.
Related papers
- Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
Networks [39.71761440499148]
Pre-training on graph neural networks (GNNs) aims to learn transferable knowledge for downstream tasks with unlabeled data.
We propose a better-with-less framework for graph pre-training: fewer, but carefully chosen data are fed into a GNN model.
Experiment results show that the proposed APT is able to obtain an efficient pre-training model with fewer training data and better downstream performance.
arXiv Detail & Related papers (2023-11-02T07:09:59Z) - When to Pre-Train Graph Neural Networks? From Data Generation
Perspective! [19.239863500722983]
Graph pre-training aims to acquire transferable knowledge from unlabeled graph data to improve downstream performance.
This paper introduces a generic framework W2PGNN to answer the question of when to pre-train.
W2PGNN offers three broad applications: providing the application scope of graph pre-trained models, the feasibility of pre-training, and assistance in selecting pre-training data to enhance downstream performance.
arXiv Detail & Related papers (2023-03-29T05:05:02Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings.
Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation.
We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder.
arXiv Detail & Related papers (2021-11-16T07:34:42Z) - Efficient Variational Graph Autoencoders for Unsupervised Cross-domain
Prerequisite Chains [3.358838755118655]
We introduce Domain-versaational Variational Graph Autoencoders (DAVGAE) to solve this cross-domain prerequisite chain learning task efficiently.
Our novel model consists of a variational graph autoencoder (VGAE) and a domain discriminator.
Results show that our model outperforms recent graph-based computation using only 1/10 graph scale and 1/3 time.
arXiv Detail & Related papers (2021-09-17T19:07:27Z) - Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised
Pre-Training [67.71228426496013]
We show that using target domain data during pre-training leads to large performance improvements across a variety of setups.
We find that pre-training on multiple domains improves performance generalization on domains not seen during training.
arXiv Detail & Related papers (2021-04-02T12:53:15Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.