Online Learning Quantum States with the Logarithmic Loss via VB-FTRL
- URL: http://arxiv.org/abs/2311.04237v2
- Date: Mon, 14 Oct 2024 06:44:47 GMT
- Title: Online Learning Quantum States with the Logarithmic Loss via VB-FTRL
- Authors: Wei-Fu Tseng, Kai-Chun Chen, Zi-Hong Xiao, Yen-Huan Li,
- Abstract summary: Online learning of quantum states with the logarithmic loss (LL-OLQS) is a classic open problem in online learning for over three decades.
In this paper, we generalize VB-FTRL for LL-OLQS with moderate computational complexity.
Each of the algorithm consists of a semidefinite program that can be implemented in time by, for example, cutting-plane methods.
- Score: 1.8856444568755568
- License:
- Abstract: Online learning of quantum states with the logarithmic loss (LL-OLQS) is a quantum generalization of online portfolio selection (OPS), a classic open problem in online learning for over three decades. This problem also emerges in designing stochastic optimization algorithms for maximum-likelihood quantum state tomography. Recently, Jezequel et al. (arXiv:2209.13932) proposed the VB-FTRL algorithm, the first regret-optimal algorithm for OPS with moderate computational complexity. In this paper, we generalize VB-FTRL for LL-OLQS. Let $d$ denote the dimension and $T$ the number of rounds. The generalized algorithm achieves a regret rate of $O ( d^2 \log ( d + T ) )$ for LL-OLQS. Each iteration of the algorithm consists of solving a semidefinite program that can be implemented in polynomial time by, for example, cutting-plane methods. For comparison, the best-known regret rate for LL-OLQS is currently $O ( d^2 \log T )$, achieved by an exponential weight method. However, no explicit implementation is available for the exponential weight method for LL-OLQS. To facilitate the generalization, we introduce the notion of VB-convexity. VB-convexity is a sufficient condition for the volumetric barrier associated with any function to be convex and is of independent interest.
Related papers
- A quantum-classical hybrid algorithm with Ising model for the learning with errors problem [13.06030390635216]
We propose a quantum-classical hybrid algorithm with Ising model (HAWI) to address the Learning-With-Errors (LWE) problem.
We identify the low-energy levels of the Hamiltonian to extract the solution, making it suitable for implementation on current noisy intermediate-scale quantum (NISQ) devices.
Our algorithm is iterations, and its time complexity depends on the specific quantum algorithm employed to find the Hamiltonian's low-energy levels.
arXiv Detail & Related papers (2024-08-15T05:11:35Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Infrequent Resolving Algorithm for Online Linear Programming [3.247415064064425]
Existing online linear programming (OLP) algorithms fall into two categories: LP-based algorithms and LP-free algorithms.
We propose an algorithm that achieves a constant regret while solving LPs only $O(loglog T)$ times over the time horizon $T$.
Our algorithm can guarantee a constant regret by solving LPs $O(loglog T)$ times, and an $Oleft(T(1/2+epsilon)Mright)$ regret by solving LPs only $M$ times.
arXiv Detail & Related papers (2024-08-01T11:09:01Z) - Quantum Algorithms for the Pathwise Lasso [1.8058773918890538]
We present a novel quantum high-dimensional linear regression algorithm based on the classical LARS (Least Angle Regression) pathwise algorithm.
Our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions.
We prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm is robust to errors.
arXiv Detail & Related papers (2023-12-21T18:57:54Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - Provably Efficient Exploration in Quantum Reinforcement Learning with Logarithmic Worst-Case Regret [23.418957451727255]
We propose a novel UCRL-style algorithm for quantum reinforcement learning (RL)
We establish an $mathcalO(mathrmpoly(S, A, H, log T))$ worst-case regret for it, where $T$ is the number of episodes.
Specifically, we develop a quantum algorithm based on value target regression (VTR) for linear mixture MDPs with $d$-dimensional linear representation.
arXiv Detail & Related papers (2023-02-21T16:23:11Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
We propose an asynchronous quasi-Newton (AsySQN) framework for vertical federated learning (VFL)
The proposed algorithms make descent steps scaled by approximate without calculating the inverse Hessian matrix explicitly.
We show that the adopted asynchronous computation can make better use of the computation resource.
arXiv Detail & Related papers (2021-09-26T07:56:10Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.