Determining the molecular Huang-Rhys factor via STM induced luminescence
- URL: http://arxiv.org/abs/2311.04543v1
- Date: Wed, 8 Nov 2023 09:17:50 GMT
- Title: Determining the molecular Huang-Rhys factor via STM induced luminescence
- Authors: Fei Wen, Guohui Dong
- Abstract summary: tunneling microscopy induced luminescence (STML) can be used to probe the optical and electronic properties of molecules.
We model the molecule as a two-level system with the vibrational degrees of freedom.
We find that the differential conductance, varying with the bias voltage, exhibits distinct step structure with various vibronic coupling strength.
- Score: 11.925958787012464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scanning tunneling microscopy induced luminescence (STML) can be used to
probe the optical and electronic properties of molecules. Concerning the
vibronic coupling, we model the molecule as a two-level system with the
vibrational degrees of freedom. Based on the Bardeen's theory, we express the
inelastic tunneling current in terms of Huang-Rhys factor within the inelastic
electron scattering (IES) mechanism. We find that the differential conductance,
varying with the bias voltage, exhibits distinct step structure with various
vibronic coupling strength. The second derivative of the inelastic tunneling
current with respect to the bias voltage shows the characteristics of
vibrational-level structure with Franck-Condon factor. Consequently, we propose
a method to determine the Huang-Rhys factor of molecules, holding promising
potential within the realm of solid-state physics.
Related papers
- Photon Antibunching in Single-Molecule Vibrational Sum-Frequency Generation [0.0]
Sum-frequency generation (SFG) allows for coherent upconversion of an electromagnetic signal.
Recent studies have shown that plasmonic nanocavities, with their deep sub-wavelength mode volumes, may allow to obtain vibrational SFG signals from a single molecule.
arXiv Detail & Related papers (2024-09-08T15:08:29Z) - Spectral splitting of a stimulated Raman transition in a single molecule [0.0]
We exploit the high Franck-Condon factor of a common-mode resonance to drive a coherent stimulated Raman transition in individual molecules.
Our study sets the ground for exploiting the intrinsic optomechanical degrees of freedom of molecules for applications in solid-state quantum optics and information processing.
arXiv Detail & Related papers (2023-02-28T16:37:18Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Enhanced optical nonlinearities under strong light-matter coupling [2.1352125958665136]
We present a study of the nonlinear optics of a model consisting of $N$ anharmonic multilevel systems.
We find that molecular systems in microcavities may have nonlinear phenomena significantly intensified due to the high quality of polariton resonances.
arXiv Detail & Related papers (2020-06-15T16:21:58Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - Phonon-induced optical dephasing in single organic molecules [0.0]
We present a joint experiment--theory analysis of the temperature-dependent emission spectra, zero-phonon linewidth, and second-order correlation function of light emitted from a single molecule.
Our results constitute an essential characterisation of the photon coherence of these promising molecules, paving the way towards their use in future quantum information applications.
arXiv Detail & Related papers (2020-01-13T16:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.