Speech language models lack important brain-relevant semantics
- URL: http://arxiv.org/abs/2311.04664v2
- Date: Sun, 16 Jun 2024 23:52:21 GMT
- Title: Speech language models lack important brain-relevant semantics
- Authors: Subba Reddy Oota, Emin Çelik, Fatma Deniz, Mariya Toneva,
- Abstract summary: Recent work has shown that text-based language models predict both text-evoked and speech-evoked brain activity to an impressive degree.
This poses the question of what types of information language models truly predict in the brain.
- Score: 6.626540321463248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite known differences between reading and listening in the brain, recent work has shown that text-based language models predict both text-evoked and speech-evoked brain activity to an impressive degree. This poses the question of what types of information language models truly predict in the brain. We investigate this question via a direct approach, in which we systematically remove specific low-level stimulus features (textual, speech, and visual) from language model representations to assess their impact on alignment with fMRI brain recordings during reading and listening. Comparing these findings with speech-based language models reveals starkly different effects of low-level features on brain alignment. While text-based models show reduced alignment in early sensory regions post-removal, they retain significant predictive power in late language regions. In contrast, speech-based models maintain strong alignment in early auditory regions even after feature removal but lose all predictive power in late language regions. These results suggest that speech-based models provide insights into additional information processed by early auditory regions, but caution is needed when using them to model processing in late language regions. We make our code publicly available. [https://github.com/subbareddy248/speech-llm-brain]
Related papers
- Towards Unified Neural Decoding of Perceived, Spoken and Imagined Speech from EEG Signals [1.33134751838052]
This research investigated the effectiveness of deep learning models for non-invasive neural signal decoding.
It focused on distinguishing between different speech paradigms, including perceived, overt, whispered, and imagined speech.
arXiv Detail & Related papers (2024-11-14T07:20:08Z) - Improving semantic understanding in speech language models via brain-tuning [19.732593005537606]
Speech language models align with human brain responses to natural language to an impressive degree.
Current models rely heavily on low-level speech features, indicating they lack brain-relevant semantics.
We address this limitation by inducing brain-relevant bias directly into the models via fine-tuning with fMRI recordings.
arXiv Detail & Related papers (2024-10-11T20:06:21Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences.
We show that SpeechAlign can bridge the distribution gap and facilitate continuous self-improvement of the speech language model.
arXiv Detail & Related papers (2024-04-08T15:21:17Z) - Do self-supervised speech and language models extract similar
representations as human brain? [2.390915090736061]
Speech and language models trained through self-supervised learning (SSL) demonstrate strong alignment with brain activity during speech and language perception.
We evaluate the brain prediction performance of two representative SSL models, Wav2Vec2.0 and GPT-2.
arXiv Detail & Related papers (2023-10-07T01:39:56Z) - Joint processing of linguistic properties in brains and language models [14.997785690790032]
We investigate the correspondence between the detailed processing of linguistic information by the human brain versus language models.
We find that elimination of specific linguistic properties results in a significant decrease in brain alignment.
These findings provide clear evidence for the role of specific linguistic information in the alignment between brain and language models.
arXiv Detail & Related papers (2022-12-15T19:13:42Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Neural Language Taskonomy: Which NLP Tasks are the most Predictive of
fMRI Brain Activity? [3.186888145772382]
Several popular Transformer based language models have been found to be successful for text-driven brain encoding.
In this work, we explore transfer learning from representations learned for ten popular natural language processing tasks.
Experiments across all 10 task representations provide the following cognitive insights.
arXiv Detail & Related papers (2022-05-03T10:23:08Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.