Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment
- URL: http://arxiv.org/abs/2311.04818v5
- Date: Fri, 17 May 2024 13:35:07 GMT
- Title: Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment
- Authors: Matt Gorbett, Hossein Shirazi, Indrakshi Ray,
- Abstract summary: Federated learning is a method for training a machine learning model across remote clients.
We reformulate the typical federated learning setup to learn N models optimized for a common objective.
We find that the technique achieves competitive results on a variety of data partitions compared to state-of-the-art approaches.
- Score: 4.95475852994362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from the collective knowledge of data dispersed across private sources can provide neural networks with enhanced generalization capabilities. Federated learning, a method for collaboratively training a machine learning model across remote clients, achieves this by combining client models via the orchestration of a central server. However, current approaches face two critical limitations: i) they struggle to converge when client domains are sufficiently different, and ii) current aggregation techniques produce an identical global model for each client. In this work, we address these issues by reformulating the typical federated learning setup: rather than learning a single global model, we learn N models each optimized for a common objective. To achieve this, we apply a weighted distance minimization to model parameters shared in a peer-to-peer topology. The resulting framework, Iterative Parameter Alignment, applies naturally to the cross-silo setting, and has the following properties: (i) a unique solution for each participant, with the option to globally converge each model in the federation, and (ii) an optional early-stopping mechanism to elicit fairness among peers in collaborative learning settings. These characteristics jointly provide a flexible new framework for iteratively learning from peer models trained on disparate datasets. We find that the technique achieves competitive results on a variety of data partitions compared to state-of-the-art approaches. Further, we show that the method is robust to divergent domains (i.e. disjoint classes across peers) where existing approaches struggle.
Related papers
- Personalized Federated Learning via Sequential Layer Expansion in Representation Learning [0.0]
Federated learning ensures the privacy of clients by conducting distributed training on individual client devices and sharing only the model weights with a central server.
We propose a new representation learning-based approach that suggests decoupling the entire deep learning model into more densely divided parts with the application of suitable scheduling methods.
arXiv Detail & Related papers (2024-04-27T06:37:19Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Cross-domain Federated Object Detection [43.66352018668227]
Federated learning can enable multi-party collaborative learning without leaking client data.
We propose a cross-domain federated object detection framework, named FedOD.
arXiv Detail & Related papers (2022-06-30T03:09:59Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
Federated learning is a distributed machine learning method that can be used to deploy AI-dependent IoT applications.
This paper proposes a federated learning method based on co-training and generative adversarial networks(GANs)
In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
arXiv Detail & Related papers (2022-02-18T12:08:46Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.