Joint Sensing and Semantic Communications with Multi-Task Deep Learning
- URL: http://arxiv.org/abs/2311.05017v2
- Date: Mon, 21 Oct 2024 16:30:03 GMT
- Title: Joint Sensing and Semantic Communications with Multi-Task Deep Learning
- Authors: Yalin E. Sagduyu, Tugba Erpek, Aylin Yener, Sennur Ulukus,
- Abstract summary: This paper explores the integration of deep learning techniques for joint sensing and communications, with an extension to semantic communications.
The integrated system comprises a transmitter and receiver operating over a wireless channel, subject to noise and fading.
The transmitter employs a deep neural network (DNN), namely an encoder, for joint operations of source coding, channel coding, and modulation.
The receiver utilizes another DNN, namely a decoder, for joint operations of demodulation, channel decoding, and source decoding to reconstruct the data samples.
- Score: 45.622060532244944
- License:
- Abstract: This paper explores the integration of deep learning techniques for joint sensing and communications, with an extension to semantic communications. The integrated system comprises a transmitter and receiver operating over a wireless channel, subject to noise and fading. The transmitter employs a deep neural network (DNN), namely an encoder, for joint operations of source coding, channel coding, and modulation, while the receiver utilizes another DNN, namely a decoder, for joint operations of demodulation, channel decoding, and source decoding to reconstruct the data samples. The transmitted signal serves a dual purpose, supporting communication with the receiver and enabling sensing. When a target is present, the reflected signal is received, and another DNN decoder is utilized for sensing. This decoder is responsible for detecting the target's presence and determining its range. All these DNNs, including one encoder and two decoders, undergo joint training through multi-task learning, considering data and channel characteristics. This paper extends to incorporate semantic communications by introducing an additional DNN, another decoder at the receiver, operating as a task classifier. This decoder evaluates the fidelity of label classification for received signals, enhancing the integration of semantics within the communication process. The study presents results based on using the CIFAR-10 as the input data and accounting for channel effects like Additive White Gaussian Noise (AWGN) and Rayleigh fading. The results underscore the effectiveness of multi-task deep learning in achieving high-fidelity joint sensing and semantic communications.
Related papers
- Low-Latency Task-Oriented Communications with Multi-Round, Multi-Task Deep Learning [45.622060532244944]
We propose a multi-round, multi-task learning (MRMTL) approach for the dynamic update of channel uses in multi-round transmissions.
We show that MRMTL significantly improves the efficiency of task-oriented communications.
arXiv Detail & Related papers (2024-11-15T17:48:06Z) - Joint Sensing and Task-Oriented Communications with Image and Wireless
Data Modalities for Dynamic Spectrum Access [49.83882366499547]
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters.
We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters.
We propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center.
arXiv Detail & Related papers (2023-12-21T15:26:26Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
This paper studies the notion of age in task-oriented communications that aims to execute a task at a receiver utilizing the data at its transmitter.
The transmitter-receiver operations are modeled as an encoder-decoder pair of deep neural networks (DNNs) that are jointly trained.
arXiv Detail & Related papers (2023-01-11T04:15:51Z) - Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial
Attacks [70.51799606279883]
We introduce test-time adversarial attacks on deep neural networks (DNNs) for semantic communications.
We show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low.
arXiv Detail & Related papers (2022-12-20T17:13:22Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
We introduce a novel "all-spike" low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs)
We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC)
The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.
arXiv Detail & Related papers (2020-09-03T09:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.