Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of
Generative AI and State-of-the-Art Neural Networks
- URL: http://arxiv.org/abs/2311.06079v1
- Date: Fri, 10 Nov 2023 14:24:50 GMT
- Title: Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of
Generative AI and State-of-the-Art Neural Networks
- Authors: Zhaoyang Ma, Xupeng He, Hyung Kwak, Jun Gao, Shuyu Sun, Bicheng Yan
- Abstract summary: In digital rock physics, analysing microstructures from CT and SEM scans is crucial for estimating properties like porosity and pore connectivity.
Traditional segmentation methods like thresholding and CNNs often fall short in accurately detailing rock microstructures and are prone to noise.
U-Net improved segmentation accuracy but required many expert-annotated samples, a laborious and error-prone process due to complex pore shapes.
Our study employed an advanced generative AI model, the diffusion model, to overcome these limitations.
TransU-Net sets a new standard in digital rock physics, paving the way for future geoscience and engineering breakthroughs.
- Score: 5.089732183029123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In digital rock physics, analysing microstructures from CT and SEM scans is
crucial for estimating properties like porosity and pore connectivity.
Traditional segmentation methods like thresholding and CNNs often fall short in
accurately detailing rock microstructures and are prone to noise. U-Net
improved segmentation accuracy but required many expert-annotated samples, a
laborious and error-prone process due to complex pore shapes. Our study
employed an advanced generative AI model, the diffusion model, to overcome
these limitations. This model generated a vast dataset of CT/SEM and binary
segmentation pairs from a small initial dataset. We assessed the efficacy of
three neural networks: U-Net, Attention-U-net, and TransUNet, for segmenting
these enhanced images. The diffusion model proved to be an effective data
augmentation technique, improving the generalization and robustness of deep
learning models. TransU-Net, incorporating Transformer structures, demonstrated
superior segmentation accuracy and IoU metrics, outperforming both U-Net and
Attention-U-net. Our research advances rock image segmentation by combining the
diffusion model with cutting-edge neural networks, reducing dependency on
extensive expert data and boosting segmentation accuracy and robustness.
TransU-Net sets a new standard in digital rock physics, paving the way for
future geoscience and engineering breakthroughs.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability [11.076431337488973]
This study proposes a novel hybrid self-supervised depth estimation network, CCDepth, comprising convolutional neural networks (CNNs) and the white-box CRATE network.
This novel network uses CNNs and the CRATE modules to extract local and global information in images, respectively, thereby boosting learning efficiency and reducing model size.
arXiv Detail & Related papers (2024-09-30T04:19:40Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
We propose an end-to-end deep learning architecture called EEG-ITNet.
Our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals.
EEG-ITNet shows up to 5.9% improvement in the classification accuracy in different scenarios.
arXiv Detail & Related papers (2022-04-14T13:18:43Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Physical Accuracy of Deep Neural Networks for 2D and 3D Multi-Mineral
Segmentation of Rock micro-CT Images [0.0]
The performance of 4 CNN architectures is tested for 2D and 3D cases in 10 configurations.
A new network architecture is introduced as a hybrid fusion of U-net and ResNet, combining short and long skip connections in a Network-in-Network configuration.
The 3D implementation outperforms all other tested models in voxelwise and physical accuracy measures.
arXiv Detail & Related papers (2020-02-13T03:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.