Time Scale Network: A Shallow Neural Network For Time Series Data
- URL: http://arxiv.org/abs/2311.06170v1
- Date: Fri, 10 Nov 2023 16:39:55 GMT
- Title: Time Scale Network: A Shallow Neural Network For Time Series Data
- Authors: Trevor Meyer, Camden Shultz, Najim Dehak, Laureano Moro-Velazquez,
Pedro Irazoqui
- Abstract summary: Time series data is often composed of information at multiple time scales.
Deep learning strategies exist to capture this information, but many make networks larger, require more data, are more demanding to compute, and are difficult to interpret.
We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation.
- Score: 18.46091267922322
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Time series data is often composed of information at multiple time scales,
particularly in biomedical data. While numerous deep learning strategies exist
to capture this information, many make networks larger, require more data, are
more demanding to compute, and are difficult to interpret. This limits their
usefulness in real-world applications facing even modest computational or data
constraints and can further complicate their translation into practice. We
present a minimal, computationally efficient Time Scale Network combining the
translation and dilation sequence used in discrete wavelet transforms with
traditional convolutional neural networks and back-propagation. The network
simultaneously learns features at many time scales for sequence classification
with significantly reduced parameters and operations. We demonstrate advantages
in Atrial Dysfunction detection including: superior accuracy-per-parameter and
accuracy-per-operation, fast training and inference speeds, and visualization
and interpretation of learned patterns in atrial dysfunction detection on ECG
signals. We also demonstrate impressive performance in seizure prediction using
EEG signals. Our network isolated a few time scales that could be strategically
selected to achieve 90.9% accuracy using only 1,133 active parameters and
consistently converged on pulsatile waveform shapes. This method does not rest
on any constraints or assumptions regarding signal content and could be
leveraged in any area of time series analysis dealing with signals containing
features at many time scales.
Related papers
- Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks [1.1432909951914676]
This study introduces a novel approach Multi-Scale Convolutional LSTM with Transfer Learning (TL) to detect anomalies in cellular networks.
The model is initially trained from scratch using a publicly available dataset to learn typical network behavior.
We compare the performance of the model trained from scratch with that of the fine-tuned model using TL.
arXiv Detail & Related papers (2024-09-30T17:51:54Z) - TCGPN: Temporal-Correlation Graph Pre-trained Network for Stock Forecasting [1.864621482724548]
We propose a novel approach called the Temporal-Correlation Graph Pre-trained Network (TCGPN) to address these limitations.
TCGPN utilize Temporal-correlation fusion encoder to get a mixed representation and pre-training method with carefully designed temporal and correlation pre-training tasks.
Experiments are conducted on real stock market data sets CSI300 and CSI500 that exhibit minimal periodicity.
arXiv Detail & Related papers (2024-07-26T05:27:26Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
We propose an explainable neural-symbolic framework for the classification of time-series behaviors.
We demonstrate the computational efficiency, compactness, and interpretability of the proposed method through driving scenarios and naval surveillance case studies.
arXiv Detail & Related papers (2022-10-04T21:11:54Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A complex network approach to time series analysis with application in
diagnosis of neuromuscular disorders [1.9659095632676098]
This paper proposes a new approach to network development named GraphTS to overcome the limited accuracy of existing methods.
For this purpose, EMG signals are pre-processed and mapped to a complex network by a standard visibility graph algorithm.
The resulting networks can differentiate between healthy and patient samples.
arXiv Detail & Related papers (2021-08-16T06:44:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.