Efficient Parallelization of a Ubiquitous Sequential Computation
- URL: http://arxiv.org/abs/2311.06281v4
- Date: Wed, 27 Dec 2023 12:50:55 GMT
- Title: Efficient Parallelization of a Ubiquitous Sequential Computation
- Authors: Franz A. Heinsen
- Abstract summary: We find a succinct expression for computing the sequence $x_t = a_t x_t-1 + b_t$ in parallel.
On $n$ parallel processors, the computation of $n$ elements incurs $mathcalO(log n)$ time and $mathcalO(n)$ space.
We implement our expression in software, test it on parallel hardware, and verify that it executes faster than sequential computation by a factor of $fracnlog n$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We find a succinct expression for computing the sequence $x_t = a_t x_{t-1} +
b_t$ in parallel with two prefix sums, given $t = (1, 2, \dots, n)$, $a_t \in
\mathbb{R}^n$, $b_t \in \mathbb{R}^n$, and initial value $x_0 \in \mathbb{R}$.
On $n$ parallel processors, the computation of $n$ elements incurs
$\mathcal{O}(\log n)$ time and $\mathcal{O}(n)$ space. Sequences of this form
are ubiquitous in science and engineering, making efficient parallelization
useful for a vast number of applications. We implement our expression in
software, test it on parallel hardware, and verify that it executes faster than
sequential computation by a factor of $\frac{n}{\log n}$.
Related papers
- A Fast Multiplication Algorithm and RLWE-PLWE Equivalence for the Maximal Real Subfield of the $2^r p^s$-th Cyclotomic Field [0.0]
We prove the RLWE-PLWE equivalence for the maximal real subfields of the cyclotomic fields with conductor $n = 2r ps$.
We also describe a fast multiplication algorithm in the ring of integers of these real subfields.
arXiv Detail & Related papers (2025-04-07T15:01:48Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - Fast Attention Requires Bounded Entries [19.17278873525312]
inner product attention computation is a fundamental task for training large language models such as Transformer, GPT-1, BERT, GPT-2, GPT-3 and ChatGPT.
We investigate whether faster algorithms are possible by implicitly making use of the matrix $A$.
This gives a theoretical explanation for the phenomenon observed in practice that attention computation is much more efficient when the input matrices have smaller entries.
arXiv Detail & Related papers (2023-02-26T02:42:39Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Quantum machine learning with subspace states [8.22379888383833]
We introduce a new approach for quantum linear algebra based on quantum subspace states and present three new quantum machine learning algorithms.
The first is a quantum sampling algorithm that samples from the distribution $Pr[S]= det(X_SX_ST)$ for $|S|=d$ using $O(nd)$ gates and with circuit depth $O(dlog n)$.
The second is a quantum singular value estimation algorithm for compound matrices $mathcalAk$, the speedup for this algorithm is potentially exponential.
arXiv Detail & Related papers (2022-01-31T19:34:47Z) - Computational Complexity of Normalizing Constants for the Product of
Determinantal Point Processes [12.640283469603357]
We study the computational complexity of computing the normalizing constant.
We show that $sum_Sdet(bf A_S,S)p$ exactly for every (fixed) positive even integer $p$ is UP-hard and Mod$_3$P-hard.
arXiv Detail & Related papers (2021-11-28T14:08:25Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
We first prove a simple variant of the vanilla coordinate ascent, called Coordinate-Ascent+.
We then propose Coordinate-Ascent++, that achieves tight $(1-1/e-varepsilon)$-approximation guarantee while performing the same number of iterations.
The computation of each round of Coordinate-Ascent++ can be easily parallelized so that the computational cost per machine scales as $O(n/sqrtvarepsilon+nlog n)$.
arXiv Detail & Related papers (2020-06-21T06:57:59Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.