Geo-Localization Based on Dynamically Weighted Factor-Graph
- URL: http://arxiv.org/abs/2311.07301v2
- Date: Thu, 16 May 2024 10:43:47 GMT
- Title: Geo-Localization Based on Dynamically Weighted Factor-Graph
- Authors: Miguel Ángel Muñoz-Bañón, Alejandro Olivas, Edison Velasco-Sánchez, Francisco A. Candelas, Fernando Torres,
- Abstract summary: Feature-based geo-localization relies on associating features extracted from aerial imagery with those detected by the vehicle's sensors.
This requires that the type of landmarks must be observable from both sources.
We present a dynamically weighted factor graph model for the vehicle's trajectory estimation.
- Score: 74.75763142610717
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Feature-based geo-localization relies on associating features extracted from aerial imagery with those detected by the vehicle's sensors. This requires that the type of landmarks must be observable from both sources. This lack of variety of feature types generates poor representations that lead to outliers and deviations produced by ambiguities and lack of detections, respectively. To mitigate these drawbacks, in this paper, we present a dynamically weighted factor graph model for the vehicle's trajectory estimation. The weight adjustment in this implementation depends on information quantification in the detections performed using a LiDAR sensor. Also, a prior (GNSS-based) error estimation is included in the model. Then, when the representation becomes ambiguous or sparse, the weights are dynamically adjusted to rely on the corrected prior trajectory, mitigating outliers and deviations in this way. We compare our method against state-of-the-art geo-localization ones in a challenging and ambiguous environment, where we also cause detection losses. We demonstrate mitigation of the mentioned drawbacks where the other methods fail.
Related papers
- Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly
Detection with Scale Learning [11.245813423781415]
We devise novel data-driven supervision for data by introducing a characteristic -- scale -- as data labels.
Scales serve as labels attached to transformed representations, thus offering ample labeled data for neural network training.
This paper further proposes a scale learning-based anomaly detection method.
arXiv Detail & Related papers (2023-05-25T14:48:00Z) - RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception [0.0]
A novel graph neural network is proposed that does not just use the information of the points themselves but also the relationships between them.
The model is designed to consider both point features and point-pair features, embedded in the edges of the graph.
The RadarGNN model outperforms all previous methods on the RadarScenes dataset.
arXiv Detail & Related papers (2023-04-13T13:57:21Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - A Two-Block RNN-based Trajectory Prediction from Incomplete Trajectory [14.725386295605666]
We introduce a two-block RNN model that approximates the inference steps of the Bayesian filtering framework.
We show that the proposed model improves the prediction accuracy compared to the three baseline imputation methods.
We also show that our proposed method can achieve better prediction compared to the baselines when there is no miss-detection.
arXiv Detail & Related papers (2022-03-14T13:39:44Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - A Geometric Perspective towards Neural Calibration via Sensitivity
Decomposition [31.557715381838147]
It is well known that vision classification models suffer from poor calibration in the face of data distribution shifts.
We propose Geometric Sensitivity Decomposition (GSD) which decomposes the norm of a sample feature embedding into an instance-dependent and an instance-independent component.
Inspired by the decomposition, we analytically derive a simple extension to current softmax-linear models, which learns to disentangle the two components during training.
arXiv Detail & Related papers (2021-10-27T16:46:41Z) - Learning High-Precision Bounding Box for Rotated Object Detection via
Kullback-Leibler Divergence [100.6913091147422]
Existing rotated object detectors are mostly inherited from the horizontal detection paradigm.
In this paper, we are motivated to change the design of rotation regression loss from induction paradigm to deduction methodology.
arXiv Detail & Related papers (2021-06-03T14:29:19Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
This paper focuses on a novel and challenging detection scenario: A majority of true objects/instances is unlabeled in the datasets.
Previous art has proposed to use soft sampling to re-weight the gradients of RoIs based on the overlaps with positive instances, while their method is mainly based on the two-stage detector.
In this paper, we introduce a superior solution called Background Recalibration Loss (BRL) that can automatically re-calibrate the loss signals according to the pre-defined IoU threshold and input image.
arXiv Detail & Related papers (2020-02-12T23:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.