ResMGCN: Residual Message Graph Convolution Network for Fast Biomedical
Interactions Discovering
- URL: http://arxiv.org/abs/2311.07632v2
- Date: Sun, 18 Feb 2024 03:46:18 GMT
- Title: ResMGCN: Residual Message Graph Convolution Network for Fast Biomedical
Interactions Discovering
- Authors: Zecheng Yin
- Abstract summary: We propose a novel Residual Message Graph Convolution Network (ResMGCN) for fast and precise biomedical interaction prediction.
We conduct experiments on four biomedical interaction network datasets, including protein-protein, drug-drug, drug-target, and gene-disease interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical information graphs are crucial for interaction discovering of
biomedical information in modern age, such as identification of multifarious
molecular interactions and drug discovery, which attracts increasing interests
in biomedicine, bioinformatics, and human healthcare communities. Nowadays,
more and more graph neural networks have been proposed to learn the entities of
biomedical information and precisely reveal biomedical molecule interactions
with state-of-the-art results. These methods remedy the fading of features from
a far distance but suffer from remedying such problem at the expensive cost of
redundant memory and time. In our paper, we propose a novel Residual Message
Graph Convolution Network (ResMGCN) for fast and precise biomedical interaction
prediction in a different idea. Specifically, instead of enhancing the message
from far nodes, ResMGCN aggregates lower-order information with the next round
higher information to guide the node update to obtain a more meaningful node
representation. ResMGCN is able to perceive and preserve various messages from
the previous layer and high-order information in the current layer with least
memory and time cost to obtain informative representations of biomedical
entities. We conduct experiments on four biomedical interaction network
datasets, including protein-protein, drug-drug, drug-target, and gene-disease
interactions, which demonstrates that ResMGCN outperforms previous
state-of-the-art models while achieving superb effectiveness on both storage
and time.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.
To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.
Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Predicting Molecule-Target Interaction by Learning Biomedical Network
and Molecule Representations [10.128856077021625]
We propose a pseudo-siamese Graph Neural Network method, namely MTINet+, which learns both biomedical network topological and molecule structural/chemical information as representations to predict potential interaction of given molecule and target pair.
In the experiments of different molecule-target interaction tasks, MTINet+ significantly outperforms over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-02-02T10:00:46Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Heterogeneous Graph based Deep Learning for Biomedical Network Link
Prediction [7.628651624423363]
We propose a Graph Pair based Link Prediction model (GPLP) for predicting biomedical network links.
InP, 1-hop subgraphs extracted from known network interaction matrix is learnt to predict missing links.
Our method demonstrates the potential applications in other biomedical networks.
arXiv Detail & Related papers (2021-01-28T07:35:29Z) - Predicting Biomedical Interactions with Higher-Order Graph Convolutional
Networks [2.9488233765621295]
We present a higher-order graph convolutional network (HOGCN) to aggregate information from the higher-order neighborhood for biomedical interaction prediction.
Experiments on four interaction networks, including protein-protein, drug-drug, drug-target, and gene-disease interactions, show that HOGCN achieves more accurate and calibrated predictions.
arXiv Detail & Related papers (2020-10-16T17:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.