Designing Theory of Computing Backwards
- URL: http://arxiv.org/abs/2311.07803v1
- Date: Mon, 13 Nov 2023 23:32:41 GMT
- Title: Designing Theory of Computing Backwards
- Authors: Ryan E. Dougherty
- Abstract summary: Theory of computing (ToC) courses within undergraduate CS programs are often placed near the end of the program.
What is often intuitive for students about what a computer'' is--a Turing machine--is taught at the end of the course, which necessitates motivation for earlier models.
This poster contains our experiences in designing a ToC course that teaches the material effectively backwards''
- Score: 0.30458514384586394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design of any technical Computer Science course must involve its context
within the institution's CS program, but also incorporate any new material that
is relevant and appropriately accessible to students. In many institutions,
theory of computing (ToC) courses within undergraduate CS programs are often
placed near the end of the program, and have a very common structure of
building off previous sections of the course. The central question behind any
such course is ``What are the limits of computers?'' for various types of
computational models. However, what is often intuitive for students about what
a ``computer'' is--a Turing machine--is taught at the end of the course, which
necessitates motivation for earlier models. This poster contains our
experiences in designing a ToC course that teaches the material effectively
``backwards,'' with pedagogic motivation of instead asking the question ``What
suitable restrictions can we place on computers to make their problems
tractable?'' We also give recommendations for future course design.
Related papers
- Scaffolding Research Projects in Theory of Computing Courses [0.30458514384586394]
Theory of Computing (ToC) is an important course in CS curricula because of its connections to other CS courses as a foundation for them.
Recent work experimented with a new type of assignment, namely a mock conference'' project wherein students approach and present ToC problems as if they were submitting to a real'' CS conference.
arXiv Detail & Related papers (2024-10-02T16:20:27Z) - Experiences with Research Processes in an Undergraduate Theory of
Computing Course [0.30458514384586394]
Theory of computing (ToC) courses are a staple in many undergraduate CS curricula.
We emulated a common research environment within our ToC course by creating a mock conference assignment.
arXiv Detail & Related papers (2023-10-03T11:37:06Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Learnability with Time-Sharing Computational Resource Concerns [65.268245109828]
We present a theoretical framework that takes into account the influence of computational resources in learning theory.
This framework can be naturally applied to stream learning where the incoming data streams can be potentially endless.
It may also provide a theoretical perspective for the design of intelligent supercomputing operating systems.
arXiv Detail & Related papers (2023-05-03T15:54:23Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Building an Effective Automated Assessment System for C/C++ Introductory
Programming Courses in ODL Environment [0.0]
Traditional ways of assessing students' work are becoming insufficient in terms of both time and effort.
In distance education environment, such assessments become additionally more challenging in terms of hefty remuneration for hiring large number of tutors.
We identify different components that we believe are necessary in building an effective automated assessment system.
arXiv Detail & Related papers (2022-05-24T09:20:43Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
Placement and routing are two indispensable and challenging (NP-hard) tasks in modern chip design flows.
Machine learning has shown promising prospects by its data-driven nature, which can be of less reliance on knowledge and priors.
arXiv Detail & Related papers (2022-02-28T06:28:44Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
We show how data combined with machine learning techniques can predict how well a particular student will perform in a design task.
We found that our models using early design sequence actions are particularly valuable for prediction.
Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.
arXiv Detail & Related papers (2021-08-12T20:24:54Z) - Teaching Quantum Computing through a Practical Software-driven Approach:
Experience Report [0.913755431537592]
There is rapidly growing demand for a quantum workforce educated in the basics of quantum computing.
There are few offerings for non-specialists and little information on best practices for training computer science and engineering students.
We describe our experience teaching an undergraduate course on quantum computing using a practical, software-driven approach.
arXiv Detail & Related papers (2020-10-12T06:16:54Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Securing Bring-Your-Own-Device (BYOD) Programming Exams [1.9164932573056916]
Traditional pen and paper exams are inadequate for modern university programming courses.
Many institutions lack the resources or space to be able to run assessments in dedicated computer labs.
This has motivated the development of bring-your-own-device (BYOD) exam formats.
arXiv Detail & Related papers (2020-01-12T15:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.