Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning
- URL: http://arxiv.org/abs/2311.08010v2
- Date: Tue, 9 Jul 2024 05:11:25 GMT
- Title: Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning
- Authors: Helan Hu, Shuzheng Si, Haozhe Zhao, Shuang Zeng, Kaikai An, Zefan Cai, Baobao Chang,
- Abstract summary: We propose Uncertainty-Aware Teacher Learning to reduce the number of incorrect pseudo labels in the self-training stage.
We also propose Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks.
We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
- Score: 24.733773208117363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
Related papers
- Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
In Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contain unknown objects not observed in the labeled data.
It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels.
We propose Credible Teacher, an end-to-end framework to prevent uncertain pseudo labels from misleading the model.
arXiv Detail & Related papers (2024-01-01T08:19:21Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Label Matching Semi-Supervised Object Detection [85.99282969977541]
Semi-supervised object detection has made significant progress with the development of mean teacher driven self-training.
Label mismatch problem is not yet fully explored in the previous works, leading to severe confirmation bias during self-training.
We propose a simple yet effective LabelMatch framework from two different yet complementary perspectives.
arXiv Detail & Related papers (2022-06-14T05:59:41Z) - Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning
with Label Noise [6.303101074386922]
Robust Label Refurbishment (Robust LR) is a new hybrid method that integrates pseudo-labeling and confidence estimation techniques to refurbish noisy labels.
We show that our method successfully alleviates the damage of both label noise and confirmation bias.
For example, Robust LR achieves up to 4.5% absolute top-1 accuracy improvement over the previous best on the real-world noisy dataset WebVision.
arXiv Detail & Related papers (2021-12-06T12:10:17Z) - Improving Distantly-Supervised Named Entity Recognition with
Self-Collaborative Denoising Learning [9.747173655999427]
We propose a robust learning paradigm named Self-Collaborative Denoising Learning (SCDL)
SCDL jointly trains two teacher-student networks in a mutually-beneficial manner to iteratively perform noisy label refinery.
Extensive experimental results on five real-world datasets demonstrate that SCDL is superior to state-of-the-art DS-NER denoising methods.
arXiv Detail & Related papers (2021-10-09T01:45:03Z) - Unbiased Teacher for Semi-Supervised Object Detection [50.0087227400306]
We revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD.
We introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner.
arXiv Detail & Related papers (2021-02-18T17:02:57Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.