Image complexity based fMRI-BOLD visual network categorization across
visual datasets using topological descriptors and deep-hybrid learning
- URL: http://arxiv.org/abs/2311.08417v1
- Date: Fri, 3 Nov 2023 14:05:57 GMT
- Title: Image complexity based fMRI-BOLD visual network categorization across
visual datasets using topological descriptors and deep-hybrid learning
- Authors: Debanjali Bhattacharya, Neelam Sinha, Yashwanth R. and Amit
Chattopadhyay
- Abstract summary: The aim of this study is to examine how network topology differs in response to distinct visual stimuli from visual datasets.
To achieve this, 0- and 1-dimensional persistence diagrams are computed for each visual network representing COCO, ImageNet, and SUN.
The extracted K-means cluster features are fed to a novel deep-hybrid model that yields accuracy in the range of 90%-95% in classifying these visual networks.
- Score: 3.522950356329991
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study proposes a new approach that investigates differences in
topological characteristics of visual networks, which are constructed using
fMRI BOLD time-series corresponding to visual datasets of COCO, ImageNet, and
SUN. A publicly available BOLD5000 dataset is utilized that contains fMRI scans
while viewing 5254 images of diverse complexities. The objective of this study
is to examine how network topology differs in response to distinct visual
stimuli from these visual datasets. To achieve this, 0- and 1-dimensional
persistence diagrams are computed for each visual network representing COCO,
ImageNet, and SUN. For extracting suitable features from topological
persistence diagrams, K-means clustering is executed. The extracted K-means
cluster features are fed to a novel deep-hybrid model that yields accuracy in
the range of 90%-95% in classifying these visual networks. To understand
vision, this type of visual network categorization across visual datasets is
important as it captures differences in BOLD signals while perceiving images
with different contexts and complexities. Furthermore, distinctive topological
patterns of visual network associated with each dataset, as revealed from this
study, could potentially lead to the development of future neuroimaging
biomarkers for diagnosing visual processing disorders like visual agnosia or
prosopagnosia, and tracking changes in visual cognition over time.
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Investigating the changes in BOLD responses during viewing of images
with varied complexity: An fMRI time-series based analysis on human vision [2.7036595757881323]
This work aims to investigate the neurological variation of human brain responses during viewing of images with varied complexity using fMRI time series (TS) analysis.
Our first study employs classical machine learning and deep learning strategies to classify image complexity-specific fMRI TS.
The obtained result of this analysis has established a baseline in studying how differently human brain functions while looking into images of diverse complexities.
arXiv Detail & Related papers (2023-09-27T08:46:09Z) - Spatial encoding of BOLD fMRI time series for categorizing static images
across visual datasets: A pilot study on human vision [3.038642416291856]
Specific image categorization is performed using fMRI time series (TS) to understand differences in neuronal activities related to vision.
To understand vision, it is important to study how brain functions while looking at different images.
It is seen that parallel CNN model outperforms other network models with an improvement of 7% for multi-class classification.
arXiv Detail & Related papers (2023-09-07T09:31:27Z) - Graph Self-Supervised Learning for Endoscopic Image Matching [1.8275108630751844]
We propose a novel self-supervised approach that combines Convolutional Neural Networks for capturing local visual appearance and attention-based Graph Neural Networks for modeling spatial relationships between key-points.
Our approach is trained in a fully self-supervised scheme without the need for labeled data.
Our approach outperforms state-of-the-art handcrafted and deep learning-based methods, demonstrating exceptional performance in terms of precision rate (1) and matching score (99.3%)
arXiv Detail & Related papers (2023-06-19T19:53:41Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Neural encoding and interpretation for high-level visual cortices based
on fMRI using image caption features [14.038605815510145]
This study introduces one higher-level vision task: image caption (IC) task and proposed the visual encoding model based on IC features (ICFVEM) to encode voxels of high-level visual cortices.
arXiv Detail & Related papers (2020-03-26T08:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.