Scalable Federated Learning for Clients with Different Input Image Sizes
and Numbers of Output Categories
- URL: http://arxiv.org/abs/2311.08716v1
- Date: Wed, 15 Nov 2023 05:43:14 GMT
- Title: Scalable Federated Learning for Clients with Different Input Image Sizes
and Numbers of Output Categories
- Authors: Shuhei Nitta, Taiji Suzuki, Albert Rodr\'iguez Mulet, Atsushi Yaguchi
and Ryusuke Hirai
- Abstract summary: Federated learning is a privacy-preserving training method which consists of training from a plurality of clients but without sharing their confidential data.
We propose an effective federated learning method named ScalableFL, where the depths and widths of the local models for each client are adjusted according to the clients' input image size and the numbers of output categories.
- Score: 34.22635158366194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a privacy-preserving training method which consists of
training from a plurality of clients but without sharing their confidential
data. However, previous work on federated learning do not explore suitable
neural network architectures for clients with different input images sizes and
different numbers of output categories. In this paper, we propose an effective
federated learning method named ScalableFL, where the depths and widths of the
local models for each client are adjusted according to the clients' input image
size and the numbers of output categories. In addition, we provide a new bound
for the generalization gap of federated learning. In particular, this bound
helps to explain the effectiveness of our scalable neural network approach. We
demonstrate the effectiveness of ScalableFL in several heterogeneous client
settings for both image classification and object detection tasks.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Personalized Federated Learning via Sequential Layer Expansion in Representation Learning [0.0]
Federated learning ensures the privacy of clients by conducting distributed training on individual client devices and sharing only the model weights with a central server.
We propose a new representation learning-based approach that suggests decoupling the entire deep learning model into more densely divided parts with the application of suitable scheduling methods.
arXiv Detail & Related papers (2024-04-27T06:37:19Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
Data heterogeneity is one of the most challenging issues in federated learning.
One such approach in deep neural networks based tasks is employing a shared feature representation and learning a customized classifier head for each client.
In this work, we conduct explicit local-global feature alignment by leveraging global semantic knowledge for learning a better representation.
arXiv Detail & Related papers (2023-06-20T19:58:58Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
We propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg)
FedClassAvg aggregates weights as an agreement on decision boundaries on feature spaces.
We demonstrate it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.
arXiv Detail & Related papers (2022-10-25T08:32:08Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.