On the Importance of Step-wise Embeddings for Heterogeneous Clinical
Time-Series
- URL: http://arxiv.org/abs/2311.08902v1
- Date: Wed, 15 Nov 2023 12:18:15 GMT
- Title: On the Importance of Step-wise Embeddings for Heterogeneous Clinical
Time-Series
- Authors: Rita Kuznetsova, Aliz\'ee Pace, Manuel Burger, Hugo Y\`eche, Gunnar
R\"atsch
- Abstract summary: Recent advances in deep learning for sequence modeling have not fully transferred to tasks handling time-series from electronic health records.
In particular, in problems related to the Intensive Care Unit (ICU), the state-of-the-art remains to tackle sequence classification in a tabular manner with tree-based methods.
- Score: 1.3285222309805063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning architectures for sequence modeling have not
fully transferred to tasks handling time-series from electronic health records.
In particular, in problems related to the Intensive Care Unit (ICU), the
state-of-the-art remains to tackle sequence classification in a tabular manner
with tree-based methods. Recent findings in deep learning for tabular data are
now surpassing these classical methods by better handling the severe
heterogeneity of data input features. Given the similar level of feature
heterogeneity exhibited by ICU time-series and motivated by these findings, we
explore these novel methods' impact on clinical sequence modeling tasks. By
jointly using such advances in deep learning for tabular data, our primary
objective is to underscore the importance of step-wise embeddings in
time-series modeling, which remain unexplored in machine learning methods for
clinical data. On a variety of clinically relevant tasks from two large-scale
ICU datasets, MIMIC-III and HiRID, our work provides an exhaustive analysis of
state-of-the-art methods for tabular time-series as time-step embedding models,
showing overall performance improvement. In particular, we evidence the
importance of feature grouping in clinical time-series, with significant
performance gains when considering features within predefined semantic groups
in the step-wise embedding module.
Related papers
- Synthetic Data for Robust Stroke Segmentation [0.0]
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data.
This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation.
Our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records [1.6609516435725236]
We introduce a dynamic embedding and tokenization framework for precise representation of multimodal clinical time series.
Our framework outperformed baseline approaches on the task of predicting the occurrence of nine postoperative complications.
arXiv Detail & Related papers (2024-03-06T19:46:44Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points.
To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples.
We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines.
arXiv Detail & Related papers (2023-03-05T03:54:54Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
We aim to provide a benchmark covering a large spectrum of ICU-related tasks.
Using the HiRID dataset, we define multiple clinically relevant tasks developed in collaboration with clinicians.
We provide an in-depth analysis of current state-of-the-art sequence modeling methods, highlighting some limitations of deep learning approaches for this type of data.
arXiv Detail & Related papers (2021-11-16T15:06:42Z) - Learning Predictive and Interpretable Timeseries Summaries from ICU Data [33.787187660310444]
We propose a new procedure to learn summaries of clinical time-series that are both predictive and easily understood by humans.
Our learned summaries outperform traditional interpretable model classes and achieve performance comparable to state-of-the-art deep learning models on an in-hospital mortality classification task.
arXiv Detail & Related papers (2021-09-22T21:14:05Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.