Cross-view and Cross-pose Completion for 3D Human Understanding
- URL: http://arxiv.org/abs/2311.09104v2
- Date: Thu, 18 Apr 2024 09:03:04 GMT
- Title: Cross-view and Cross-pose Completion for 3D Human Understanding
- Authors: Matthieu Armando, Salma Galaaoui, Fabien Baradel, Thomas Lucas, Vincent Leroy, Romain Brégier, Philippe Weinzaepfel, Grégory Rogez,
- Abstract summary: We propose a pre-training approach based on self-supervised learning that works on human-centric data using only images.
We pre-train a model for body-centric tasks and one for hand-centric tasks.
With a generic transformer architecture, these models outperform existing self-supervised pre-training methods on a wide set of human-centric downstream tasks.
- Score: 22.787947086152315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human perception and understanding is a major domain of computer vision which, like many other vision subdomains recently, stands to gain from the use of large models pre-trained on large datasets. We hypothesize that the most common pre-training strategy of relying on general purpose, object-centric image datasets such as ImageNet, is limited by an important domain shift. On the other hand, collecting domain-specific ground truth such as 2D or 3D labels does not scale well. Therefore, we propose a pre-training approach based on self-supervised learning that works on human-centric data using only images. Our method uses pairs of images of humans: the first is partially masked and the model is trained to reconstruct the masked parts given the visible ones and a second image. It relies on both stereoscopic (cross-view) pairs, and temporal (cross-pose) pairs taken from videos, in order to learn priors about 3D as well as human motion. We pre-train a model for body-centric tasks and one for hand-centric tasks. With a generic transformer architecture, these models outperform existing self-supervised pre-training methods on a wide set of human-centric downstream tasks, and obtain state-of-the-art performance for instance when fine-tuning for model-based and model-free human mesh recovery.
Related papers
- Monocular Human-Object Reconstruction in the Wild [11.261465071559163]
We present a 2D-supervised method that learns the 3D human-object spatial relation prior purely from 2D images in the wild.
Our method utilizes a flow-based neural network to learn the prior distribution of the 2D human-object keypoint layout and viewports for each image in the dataset.
arXiv Detail & Related papers (2024-07-30T05:45:06Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
We present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks.
Our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image.
To deal with the lack-of-data problem that no paired data exist, we introduce a novel self-supervised strategy to train our network.
arXiv Detail & Related papers (2022-03-20T09:02:13Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z) - Unsupervised 3D Human Pose Representation with Viewpoint and Pose
Disentanglement [63.853412753242615]
Learning a good 3D human pose representation is important for human pose related tasks.
We propose a novel Siamese denoising autoencoder to learn a 3D pose representation.
Our approach achieves state-of-the-art performance on two inherently different tasks.
arXiv Detail & Related papers (2020-07-14T14:25:22Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Chained Representation Cycling: Learning to Estimate 3D Human Pose and
Shape by Cycling Between Representations [73.11883464562895]
We propose a new architecture that facilitates unsupervised, or lightly supervised, learning.
We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images.
While we present results for modeling humans, our formulation is general and can be applied to other vision problems.
arXiv Detail & Related papers (2020-01-06T14:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.