Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
- URL: http://arxiv.org/abs/2311.09122v3
- Date: Sat, 29 Jun 2024 22:50:48 GMT
- Title: Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
- Authors: Stephen Mayhew, Terra Blevins, Shuheng Liu, Marek Šuppa, Hila Gonen, Joseph Marvin Imperial, Börje F. Karlsson, Peiqin Lin, Nikola Ljubešić, LJ Miranda, Barbara Plank, Arij Riabi, Yuval Pinter,
- Abstract summary: We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages.
UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages.
- Score: 39.01204607174688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public.
Related papers
- XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
Data scarcity is a crucial issue for the development of highly multilingual NLP systems.
We propose XTREME-UP, a benchmark defined by its focus on the scarce-data scenario rather than zero-shot.
XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies.
arXiv Detail & Related papers (2023-05-19T18:00:03Z) - DualNER: A Dual-Teaching framework for Zero-shot Cross-lingual Named
Entity Recognition [27.245171237640502]
DualNER is a framework to make full use of both annotated source language corpus and unlabeled target language text.
We combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework.
arXiv Detail & Related papers (2022-11-15T12:50:59Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
We present new benchmarks on evaluation code generation models: MBXP and Multilingual HumanEval, and MathQA-X.
These datasets cover over 10 programming languages.
We are able to assess the performance of code generation models in a multi-lingual fashion.
arXiv Detail & Related papers (2022-10-26T17:17:06Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
Cross-lingual NER can transfer knowledge between languages via aligned cross-lingual representations or machine translation results.
We propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER.
We adopt a multilingual labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence.
arXiv Detail & Related papers (2022-10-13T13:32:36Z) - MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity
Recognition [15.805414696789796]
We present MultiCoNER, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages.
This dataset is designed to represent contemporary challenges in NER, including low-context scenarios.
arXiv Detail & Related papers (2022-08-30T20:45:54Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
General-purpose language intelligence evaluation has been a longstanding goal for natural language processing.
We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic.
We propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features.
arXiv Detail & Related papers (2021-12-27T11:08:58Z) - A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text
Classification [16.684856745734944]
We present a multilingual bag-of-entities model that boosts the performance of zero-shot cross-lingual text classification.
It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier.
A model trained on entity features in a resource-rich language can thus be directly applied to other languages.
arXiv Detail & Related papers (2021-10-15T01:10:50Z) - UNER: Universal Named-Entity RecognitionFramework [0.0]
We create the first multilingual UNER corpus: the SETimesparallel corpus annotated for named-entities.
The English SETimescorpus will be annotated using existing tools and knowledge bases.
The resulting annotations will be propagated automatically to other languages within the SE-Times corpora.
arXiv Detail & Related papers (2020-10-23T13:53:31Z) - XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training,
Understanding and Generation [100.09099800591822]
XGLUE is a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models.
XGLUE provides 11 diversified tasks that cover both natural language understanding and generation scenarios.
arXiv Detail & Related papers (2020-04-03T07:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.