Aligning Neural Machine Translation Models: Human Feedback in Training and Inference
- URL: http://arxiv.org/abs/2311.09132v2
- Date: Thu, 4 Jul 2024 10:16:35 GMT
- Title: Aligning Neural Machine Translation Models: Human Feedback in Training and Inference
- Authors: Miguel Moura Ramos, Patrick Fernandes, António Farinhas, André F. T. Martins,
- Abstract summary: Reinforcement learning from human feedback (RLHF) is a technique to improve the quality of the text generated by a language model.
In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, methods using minimum Bayes risk decoding and reranking have succeeded in improving the final quality of translation.
- Score: 27.84975767573212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) is a recent technique to improve the quality of the text generated by a language model, making it closer to what humans would generate. A core ingredient in RLHF's success in aligning and improving large language models (LLMs) is its reward model, trained using human feedback on model outputs. In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, recent methods using minimum Bayes risk decoding and reranking have succeeded in improving the final quality of translation. In this study, we comprehensively explore and compare techniques for integrating quality metrics as reward models into the MT pipeline. This includes using the reward model for data filtering, during the training phase through RL, and at inference time by employing reranking techniques, and we assess the effects of combining these in a unified approach. Our experimental results, conducted across multiple translation tasks, underscore the crucial role of effective data filtering, based on estimated quality, in harnessing the full potential of RL in enhancing MT quality. Furthermore, our findings demonstrate the effectiveness of combining RL training with reranking techniques, showcasing substantial improvements in translation quality.
Related papers
- Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings [25.851419860597407]
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems.
We introduce a novel approach that leverages fine-grained token-level reward mechanisms with RL methods.
We conduct experiments on small and large translation datasets to compare the impact of sentence-level versus fine-grained reward signals on translation quality.
arXiv Detail & Related papers (2024-11-08T21:55:37Z) - Self-Evolved Reward Learning for LLMs [45.6910747154447]
Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences.
We propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself.
Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance.
arXiv Detail & Related papers (2024-11-01T07:29:03Z) - Advancing Translation Preference Modeling with RLHF: A Step Towards
Cost-Effective Solution [57.42593422091653]
We explore leveraging reinforcement learning with human feedback to improve translation quality.
A reward model with strong language capabilities can more sensitively learn the subtle differences in translation quality.
arXiv Detail & Related papers (2024-02-18T09:51:49Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model [75.66013048128302]
In this work, we investigate the potential of employing the QE model as the reward model to predict human preferences for feedback training.
We first identify the overoptimization problem during QE-based feedback training, manifested as an increase in reward while translation quality declines.
To address the problem, we adopt a simple yet effective method that uses rules to detect the incorrect translations and assigns a penalty term to the reward scores of them.
arXiv Detail & Related papers (2024-01-23T16:07:43Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences.
We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST)
Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner.
arXiv Detail & Related papers (2023-08-17T14:12:48Z) - Training a Helpful and Harmless Assistant with Reinforcement Learning
from Human Feedback [8.409764908043396]
We apply preference modeling and reinforcement learning from human feedback to finetune language models to act as helpful assistants.
We find this alignment training improves performance on almost all NLP evaluations.
We explore an iterated online mode of training, where preference models and RL policies are updated on a weekly cadence with fresh human feedback data.
arXiv Detail & Related papers (2022-04-12T15:02:38Z) - Non-Parametric Online Learning from Human Feedback for Neural Machine
Translation [54.96594148572804]
We study the problem of online learning with human feedback in the human-in-the-loop machine translation.
Previous methods require online model updating or additional translation memory networks to achieve high-quality performance.
We propose a novel non-parametric online learning method without changing the model structure.
arXiv Detail & Related papers (2021-09-23T04:26:15Z) - Reinforced Curriculum Learning on Pre-trained Neural Machine Translation
Models [20.976165305749777]
We learn a curriculum for improving a pre-trained NMT model by re-selecting influential data samples from the original training set.
We propose a data selection framework based on Deterministic Actor-Critic, in which a critic network predicts the expected change of model performance.
arXiv Detail & Related papers (2020-04-13T03:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.