Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization
- URL: http://arxiv.org/abs/2311.09184v2
- Date: Fri, 12 Jul 2024 17:35:18 GMT
- Title: Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization
- Authors: Yixin Liu, Alexander R. Fabbri, Jiawen Chen, Yilun Zhao, Simeng Han, Shafiq Joty, Pengfei Liu, Dragomir Radev, Chien-Sheng Wu, Arman Cohan,
- Abstract summary: We benchmark large language models (LLMs) on instruction controllable text summarization.
Our study reveals that instruction controllable text summarization remains a challenging task for LLMs.
- Score: 132.25202059478065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) can already achieve strong performance on standard generic summarization benchmarks, their performance on more complex summarization task settings is less studied. Therefore, we benchmark LLMs on instruction controllable text summarization, where the model input consists of both a source article and a natural language requirement for desired summary characteristics. To this end, we curate an evaluation-only dataset for this task setting and conduct human evaluations of five LLM-based systems to assess their instruction-following capabilities in controllable summarization. We then benchmark LLM-based automatic evaluation for this task with 4 different evaluation protocols and 11 LLMs, resulting in 40 evaluation methods. Our study reveals that instruction controllable text summarization remains a challenging task for LLMs, since (1) all LLMs evaluated still make factual and other types of errors in their summaries; (2) no LLM-based evaluation methods can achieve a strong alignment with human annotators when judging the quality of candidate summaries; (3) different LLMs show large performance gaps in summary generation and evaluation capabilities. We make our collected benchmark InstruSum publicly available to facilitate future research in this direction.
Related papers
- ReIFE: Re-evaluating Instruction-Following Evaluation [105.75525154888655]
We present a thorough meta-evaluation of instruction following, including 25 base LLMs and 15 proposed evaluation protocols.
Our evaluation allows us to identify the best-performing base LLMs and evaluation protocols with a high degree of robustness.
arXiv Detail & Related papers (2024-10-09T17:14:50Z) - Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation [2.4889060833127665]
In this paper, we focus on evaluating the instruction-following ability of Large Language Models (LLMs) in the context of story-ending generation.
We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction.
arXiv Detail & Related papers (2024-06-24T06:53:36Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences [11.23629471911503]
EvalGen provides automated assistance to users in generating evaluation criteria and implementing assertions.
A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment.
We identify a phenomenon we dub emphcriteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria.
arXiv Detail & Related papers (2024-04-18T15:45:27Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Summarization is (Almost) Dead [49.360752383801305]
We develop new datasets and conduct human evaluation experiments to evaluate the zero-shot generation capability of large language models (LLMs)
Our findings indicate a clear preference among human evaluators for LLM-generated summaries over human-written summaries and summaries generated by fine-tuned models.
arXiv Detail & Related papers (2023-09-18T08:13:01Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.