GENEVA: GENErating and Visualizing branching narratives using LLMs
- URL: http://arxiv.org/abs/2311.09213v3
- Date: Wed, 5 Jun 2024 20:59:27 GMT
- Title: GENEVA: GENErating and Visualizing branching narratives using LLMs
- Authors: Jorge Leandro, Sudha Rao, Michael Xu, Weijia Xu, Nebosja Jojic, Chris Brockett, Bill Dolan,
- Abstract summary: textbfGENEVA, a prototype tool, generates a rich narrative graph with branching and reconverging storylines.
textbfGENEVA has the potential to assist in game development, simulations, and other applications with game-like properties.
- Score: 15.43734266732214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue-based Role Playing Games (RPGs) require powerful storytelling. The narratives of these may take years to write and typically involve a large creative team. In this work, we demonstrate the potential of large generative text models to assist this process. \textbf{GENEVA}, a prototype tool, generates a rich narrative graph with branching and reconverging storylines that match a high-level narrative description and constraints provided by the designer. A large language model (LLM), GPT-4, is used to generate the branching narrative and to render it in a graph format in a two-step process. We illustrate the use of GENEVA in generating new branching narratives for four well-known stories under different contextual constraints. This tool has the potential to assist in game development, simulations, and other applications with game-like properties.
Related papers
- Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - A Character-Centric Creative Story Generation via Imagination [15.345466372805516]
We introduce a novel story generation framework called CCI (Character-centric Creative story generation via Imagination)
CCI features two modules for creative story generation: IG (Image-Guided Imagination) and MW (Multi-Writer model)
In the IG module, we utilize a text-to-image model to create visual representations of key story elements, such as characters, backgrounds, and main plots.
The MW module uses these story elements to generate multiple persona-description candidates and selects the best one to insert into the story, thereby enhancing the richness and depth of the narrative.
arXiv Detail & Related papers (2024-09-25T06:54:29Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models [57.30913211264333]
We present Story3D-Agent, a pioneering approach that transforms provided narratives into 3D-rendered visualizations.
By integrating procedural modeling, our approach enables precise control over multi-character actions and motions, as well as diverse decorative elements.
We have thoroughly evaluated our Story3D-Agent to validate its effectiveness, offering a basic framework to advance 3D story representation.
arXiv Detail & Related papers (2024-08-21T17:43:15Z) - StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [8.851718319632973]
Large Language Models (LLMs) drive the behavior of virtual characters, allowing plots to emerge from interactions between characters and their environments.
We propose a novel plot creation workflow that mediates between a writer's authorial intent and the emergent behaviors from LLM-driven character simulation.
The process creates "living stories" that dynamically adapt to various game world states, resulting in narratives co-created by the author, character simulation, and player.
arXiv Detail & Related papers (2024-05-17T23:04:51Z) - GROVE: A Retrieval-augmented Complex Story Generation Framework with A
Forest of Evidence [26.90143556633735]
We propose a retrieval-autextbfGmented stotextbfRy generation framework with a ftextbfOrest of etextbfVidtextbfEnce (GROVE) to enhance stories' complexity.
We design an asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story.
arXiv Detail & Related papers (2023-10-09T03:55:55Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
We focus on a novel, yet challenging task of generating a coherent image sequence based on a given storyline, denoted as open-ended visual storytelling.
We propose a learning-based auto-regressive image generation model, termed as StoryGen, with a novel vision-language context module.
We show StoryGen can generalize to unseen characters without any optimization, and generate image sequences with coherent content and consistent character.
arXiv Detail & Related papers (2023-06-01T17:58:50Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
We study the setting of generating narratives in an open world text adventure game.
A graph representation of the underlying game state can be used to train models that consume and output both grounded graph representations and natural language descriptions and actions.
arXiv Detail & Related papers (2023-01-13T19:58:27Z) - StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story
Continuation [76.44802273236081]
We develop a model StoryDALL-E for story continuation, where the generated visual story is conditioned on a source image.
We show that our retro-fitting approach outperforms GAN-based models for story continuation and facilitates copying of visual elements from the source image.
Overall, our work demonstrates that pretrained text-to-image synthesis models can be adapted for complex and low-resource tasks like story continuation.
arXiv Detail & Related papers (2022-09-13T17:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.