Evaluating and Improving Value Judgments in AI: A Scenario-Based Study
on Large Language Models' Depiction of Social Conventions
- URL: http://arxiv.org/abs/2311.09230v1
- Date: Wed, 4 Oct 2023 08:42:02 GMT
- Title: Evaluating and Improving Value Judgments in AI: A Scenario-Based Study
on Large Language Models' Depiction of Social Conventions
- Authors: Jaeyoun You, Bongwon Suh
- Abstract summary: We evaluate how contemporary AI services competitively meet user needs, then examined society's depiction as mirrored by Large Language Models.
We suggest a model of decision-making in value-conflicting scenarios which could be adopted for future machine value judgments.
This paper advocates for a practical approach to using AI as a tool for investigating other remote worlds.
- Score: 5.457150493905063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adoption of generative AI technologies is swiftly expanding. Services
employing both linguistic and mul-timodal models are evolving, offering users
increasingly precise responses. Consequently, human reliance on these
technologies is expected to grow rapidly. With the premise that people will be
impacted by the output of AI, we explored approaches to help AI output produce
better results. Initially, we evaluated how contemporary AI services
competitively meet user needs, then examined society's depiction as mirrored by
Large Language Models (LLMs). We did a query experiment, querying about social
conventions in various countries and eliciting a one-word response. We compared
the LLMs' value judgments with public data and suggested an model of
decision-making in value-conflicting scenarios which could be adopted for
future machine value judgments. This paper advocates for a practical approach
to using AI as a tool for investigating other remote worlds. This re-search has
significance in implicitly rejecting the notion of AI making value judgments
and instead arguing a more critical perspective on the environment that defers
judgmental capabilities to individuals. We anticipate this study will empower
anyone, regardless of their capacity, to receive safe and accurate value
judgment-based out-puts effectively.
Related papers
- To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
Vision for optimal human-AI collaboration requires 'appropriate reliance' of humans on AI systems.
In practice, the performance disparity of machine learning models on out-of-distribution data makes dataset-specific performance feedback unreliable.
arXiv Detail & Related papers (2024-09-22T09:43:27Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
We argue that this is a significant way to bring ethical considerations into mathematical reasoning.
We demonstrate these ideas within the context of competing models used to advise the UK government on the spread of the Omicron variant of COVID-19 during December 2021.
arXiv Detail & Related papers (2023-09-11T15:13:36Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
We introduce a process-oriented notion of appropriate reliance called critical use that centers the human's ability to situate AI predictions against knowledge that is uniquely available to them but unavailable to the AI model.
We conduct a randomized online experiment in a complex social decision-making setting: child maltreatment screening.
We find that, by providing participants with accelerated, low-stakes opportunities to practice AI-assisted decision-making, novices came to exhibit patterns of disagreement with AI that resemble those of experienced workers.
arXiv Detail & Related papers (2023-08-30T01:54:31Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
Interpretable machine learning (IML) is an urgent topic of research.
This paper focuses on a local-based, neural-specific interpretation process applied to textual and time-series data.
arXiv Detail & Related papers (2021-04-13T09:39:33Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.