Auto-ICL: In-Context Learning without Human Supervision
- URL: http://arxiv.org/abs/2311.09263v3
- Date: Tue, 20 Aug 2024 06:34:37 GMT
- Title: Auto-ICL: In-Context Learning without Human Supervision
- Authors: Jinghan Yang, Shuming Ma, Furu Wei,
- Abstract summary: We propose Automatic In-Context Learning framework that enables the model to autonomously generate examples and instructions for problem-solving.
With experiments across various models and datasets, results show that model-generated contexts outperform human-annotated contexts.
- Score: 93.05202223767463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With in-context learning ability, the performance of large language models can be significantly boosted when provided with appropriate context. However, existing in-context learning methods mainly rely on human-provided contexts, such as labeled examples and explicit instructions. Writing context by humans is labor-intensive on various tasks and limits the model to tasks manageable by humans. To overcome these limitations, we propose Automatic In-Context Learning framework that enables the model to autonomously generate examples and instructions for problem-solving. With experiments across various models and datasets, results show that model-generated contexts outperform human-annotated contexts, including Few-Shot and Few-Shot-CoT methods, and surpass existing self-generated context methods like Zero-CoT and Auto-CoT.
Related papers
- Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Towards Truly Zero-shot Compositional Visual Reasoning with LLMs as Programmers [54.83459025465947]
Even the largest models struggle with compositional reasoning, generalization, fine-grained spatial and temporal reasoning, and counting.
Visual reasoning with large language models (LLMs) as controllers can, in principle, address these limitations by decomposing the task and solving subtasks by orchestrating a set of (visual) tools.
We present a framework that mitigates these issues by introducing spatially and temporally abstract routines and by leveraging a small number of labeled examples to automatically generate in-context examples.
arXiv Detail & Related papers (2024-01-03T20:48:47Z) - Fine-Tune Language Models as Multi-Modal Differential Equation Solvers [14.181842691371935]
We present a transformation of in-context operator learning into a multi-modal paradigm.
In particular, we take inspiration from the recent success of large language models, and propose using "captions" to integrate human knowledge about the operator.
arXiv Detail & Related papers (2023-08-09T16:44:25Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
We propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning.
We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches and learnable baselines.
arXiv Detail & Related papers (2023-05-23T20:15:56Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
In this paper, we propose an alternative approach, which we term In-Context Probing (ICP)
Similar to in-context learning, we contextualize the representation of the input with an instruction, but instead of decoding the output prediction, we probe the contextualized representation to predict the label.
We show that ICP performs competitive or superior to finetuning and can be particularly helpful to build classifiers on top of smaller models.
arXiv Detail & Related papers (2023-05-23T15:43:04Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.